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Adaptive Forward-Inverse Modeling of Reservoir Fluids Away
from Wellbores

I. Preface:

This is a report of findings submitted to the Prediction Team of the DeepLook Oil and Service
Industry Group by the Lawrence Livermore National Laboratory (LLNL) as deliverables for the
Phase I project, entitled “Adaptive Forward-Inverse Modeling of Reservoir Fluids Away from
Wellbores”.  The deliverables include: a report of results, listing(s) of commands that construct
and execute codes for selected test problems, and an evaluation with recommendations regarding
continuance of this project, including considerations of possible extensions to 3-D and additional
technical scope.

II. Executive Summary:

This Final Report contains the deliverables of the DeepLook Phase I project entitled, “Adaptive
Forward-Inverse Modeling of Reservoir Fluids Away from Wellbores”.  The deliverables are:  (i) a
description of 2-D test problem results, analyses, and technical descriptions of the techniques used,
(ii) a listing of program setup commands that construct and execute the codes for selected test
problems (these commands are in mathematical terminology, which reinforces technical
descriptions in the text),  and (iii) an evaluation and recommendation regarding continuance of this
project, including considerations of possible extensions to 3-D codes, additional technical scope,
and budget for the out-years.

The far-market objective in this project is to develop advanced technologies that can help locate
and enhance the recovery of oil from heterogeneous rock formations.  The specific technical
objective in Phase I was to develop proof-of-concept of new forward and inverse (F-I) modeling
techniques [Gelinas et al, 1998] that seek to enhance estimates (images) of formation permeability
distributions and fluid motion away from wellbore volumes.  This goes to the heart of improving
industry’s ability to jointly image reservoir permeability and flow predictions of trapped and
recovered oil versus time.  The estimation of formation permeability away from borehole
measurements is an ‘inverse’ problem.  It is an inseparable part of modeling fluid flows throughout
the reservoir in efforts to increase the efficiency of oil recovery at minimum cost.  Classic issues of
non-uniqueness, mathematical instability, noise effects, and inadequate numerical solution
techniques have historically impeded progress in reservoir parameter estimations.  Because
information pertaining to fluid and rock properties is always sampled sparsely by wellbore
measurements, a successful method for interpolating permeability and fluid data between the
measurements must be: (i) physics-based, (ii) conditioned by signal-processing tenets, and (iii)
solved with sufficiently rigorous mathematical and numerical techniques.  Such a methodology is
applied in this project, as we extend the F-I modeling methods developed at LLNL for ground water
remediation to DeepLook reservoir problems involving transient multiphase flows.  The results
obtained at this juncture are encouraging; and the proposed objectives of Phase I have been
achieved.

The text of this report begins in Section III with a statement of the problem being addressed and
the practical motivations.  It continues with a discussion of the long-standing fundamental
difficulties that need to be resolved or mitigated for successful outcomes to be achieved.  Alternative
stochastic modeling concepts and approaches that have been, or could be, applied in reservoir
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parameter estimation problems are then considered.  From that overview discussion it is apparent
that the extended F-I approach in this project was purposefully designed to meld stochastic moment
equations of fluid physics (Appendix A) with signal-processing techniques (Appendix B).  Robust
mathematical and numerical solution techniques were necessarily brought forth (Appendix C) to
solve the resulting nonlinear systems of partial differential equations (PDEs). Six developments in
computational physics were critical for successful implementation of this integrated F-I approach in
Phase I; they included:

• Novel interpolation techniques

• Spatial filtering techniques

• Simultaneous solution of F-I and spatial-filtering PDEs

• F-I model calibration techniques

• Novel PDE solution schema

• Dynamic unstructured adaptive-grid PDE solution methods

The adaptive-grid PDE solution algorithms and code-generation capabilities that were used in
this work are commercially available in a toolkit known as FlexPDE [Nelson,1998, and Backstrom,
1998].  Pending publication of detailed technical articles in scientific journals, the stochastic
theoretical basis and mathematical techniques in this work are addressed briefly in Appendices A
and B.  A brief description of FlexPDE toolkit features is presented in Appendix C.

Section IV presents results from testing the feasibility of proposed F-I modeling concepts and
computational techniques.  Example problems used in the feasibility-testing were based upon a
transient 2-D black oil model (BOM) from petroleum engineering.  Numerous test cases were
solved and verified successfully in efforts to address such basic questions as:  “What is the best
image quality that might be expected from F-I permeability interpolations between wellbore
measurements with data sets that range from very sparse to very dense?”;  “How to extract the
greatest amount of information from sparse data sets for reservoir systems, recognizing that these
problems do not generally satisfy linearity and other assumptions needed in conventional Fourier-
tranform-based signal-processing techniques?”;  “How to implement alternative spatial filtering
techniques in physical configuration space, in lieu of Fourier-transform techniques?”;  and “How
to suppress noise in both forward and inverse model simulations?”  These issues are critical to
successful advances toward end-objectives.  To investigate these issues in-depth, test cases were
posed and solved for both densely and sparsely sampled data --- with and without spatial filtering
constraints applied.  Results are summarized as follows:

Forward Model Verifications  

• Benchmarks and verifications were established for: BOM formulations, FlexPDE
algorithms, and forward model simulations of fluid pressure and saturations.  

• Two example problems were developed from petroleum engineering for ground-truth
verifications.  One was a water-flood scenario on a 2-D horizontal domain, and the other
was an oil-dome scenario on a 2-D vertical domain.  ‘Measured’ data were abstracted
from ground-truth solutions at discrete locations and used as datum points in test cases.  
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• Accuracy of forward model solutions was demonstrated to be important in the F-I
modeling approach because inverse solutions of permeability are sensitive to not only
fluid pressure and saturation but also their gradients.

• FlexPDE solutions resolved the evolution of sharp, disparate pressure and saturation
fronts extremely well over the entire problem domain, including local injection/extraction
wells.  Resolution of evolving fronts is a significant determinant of predicted times, paths,
and rates of fluids arriving at production wells, versus remaining in the formation, over
time.

• Forward model solutions are additionally important in these F-I techniques because their
dependent variables (pressure and saturation) are ‘signals’ that carry the information from
which permeability distributions are determined in inverse PDE solutions.

Inverse Model Verifications

The resolution of permeability images is a nebulous function of data sparsity.  Test cases were
thus constructed to span a broad spectrum of data density/sparsity.  We examined the relative
amounts of information that could be retrieved in F-I images from varying amounts of finitely
sampled data.  Results are presented (Section IV) for data sets ranging from the most dense
sampling (>200,000 datum points) to the most sparse sampling (one datum point) of pressure
signals.

Densely Sampled Cases:

• High-quality images of permeability were produced from densely sampled pressure data
(typically thousands to hundreds of thousands of datum points).  Results demonstrated
that considerable resolving power is attainable with the F-I techniques and FlexPDE
solution algorithms.  In addition these results provided benchmarks for examining the
significance of data sparsity, which is always a central issue in practical reservoir
applications.

• Inverse solutions with hundreds of thousands of ‘measurements’ (Section IV) support the
fact that images from a finite number of datum points cannot be truly perfect (unique) --
no matter how densely they’re spaced -- due to absent information between datum
points.  

• A suitable level of spatial filtering was generally beneficial for image quality, even when
very densely sampled data were tested.  

• Effective application of spatial filtering in the F-I method was subject to problem-specific
factors, including: data density/sparsity, permeability contrast ratios (at formation
interfaces), information propagation modes, and numerical algorithm robustness.

  Sparsely Sampled Cases:

• With Spatial Filtering:

— F-I solutions of permeability were stable with spatial filtering applied effectively,
regardless of data sparsity.  Results are presented for cases with 1, 20, 75, and
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300 pressure datum points in the oil-dome example.  These results fairly represent
countless other cases that were solved with different data sets.

— The permeability images obtained in all cases were plausible representations of
ground-truth, commensurate with data sparsity.  Image resolution improved
progressively as the number of datum points increased, consistent with original
expectations.

— The amount of information contained in images from relatively small numbers of
datum points (5-20) sometimes exceeded original expectations, which were based
on elementary data-sampling criteria.

• No Spatial Filtering:

— F-I solutions of permeability were unstable when pressure data was too sparse, as
is true in many inverse techniques.

— Unstable solutions resulted when fewer than 75 ‘measured’ pressure datum points
were tested in the oil-dome example.  This is a dramatic departure from the stable
F-I images that were obtained with spatial filtering applied.

It is apparent in Phase I results, and in previous ground water results (Appendices A and B),
that the combined signal-processing and physics-based F-I techniques, solved with rigorous
mathematical and numerical methods, produce credible images of permeability away from
wellbores, commensurate with the available data.  In some instances, where many other existing
techniques would be manifestly unstable, the F-I method produced surprisingly good images from
sparse data.  Insights gained in Phase I efforts suggest that additional advances may materialize as
these principles and solution techniques are developed more fully over time.  For example, data sets
observed at specified times (snapshots) during wellfield operations may serve as additional
constraints for enhancing permeability images.  Forward model results further suggested that oil
recovery depends on formation permeability texture and contrast ratios, physical scale and shapes
of rock heterogeneity, and disparate-scale pressure and saturation gradient evolution.  A capacity to
better resolve these sensitive features with data from multiple snapshots potentially opens promising
new paths toward attainment of far-market objectives.

Section V presents recommendations regarding continuation of this project.  From a critical
evaluation of Phase I results, we recommend continuation of this project to a Phase II effort.  The
objective in Phase II would be to further expand the concepts and methods tested in Phase I by
including: (i) representative capillary pressure curves and other relevant reservoir data, (ii) further
exploration of the practical effects of undersampling on image resolution in more realistic physics
models, and (iii) incorporating time-dependent production data with other transient data.  We
believe that it is important at this stage of development to rule out possible show-stoppers in three
essential areas before expending the much greater levels of effort that would be required with 3-D
codes and additional technical scope in a final Phase III:  First, more general representations of
capillary physics may extend the range and possible severity of nonlinear coupling and uncertainty
effects that need to be assessed.  Second, the nature and significance of image distortion between
wellbores must be assessed for a sizeable range of small-to-large data sets for practical wellfield
circumstances.  With favorable outcomes, these results may provide an early view of the value of
individual pressure measurements and the significance of their number and locations relative to
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production and/or injection wells.  Third, the inversion techniques applied for steady-state ground
water problems (Appendix B) will extend, theoretically, to inversions of data gathered at multiple
times during well-field operations.  This is a key concept for economically enhancing image
resolution from sparse data, which needs to be confirmed in 2-D, with oil-water physics.  Each of
these extensions represent formidable tasks that we believe can, and must, be resolved in Phase II,
on the path toward achievement of final far-market goals.

III. Statement of the Problem and Overview:

To maximize oil production, water may be injected into a reservoir to increase pressure
gradients that can drive additional oil to wells in successful designs.  For greatest success, fluid
fronts must remain stable and move oil along the most advantageous pathways via optimal injection
and production well configurations.  If the front(s) become unstable, injected fluids can break
through, leave too much oil behind, and possibly spoil the condition of the reservoir for future
recovery efforts.  Similarly, if the most productive locations and pathways for water-drive are not
identified, maximum recovery may not be achieved.  Knowledge of such regions during initial
production and prior to break-through could greatly increase total recovery through a more effective
strategy for in-field drilling and production operations.  A key element in these problems is that
reservoirs are usually deep beneath the surface, where moving fluid fronts and essential subsurface
properties that determine flow paths cannot be observed directly and must be estimated between
borehole locations.  

In efforts to critically determine subsurface behavior, one can study how energy and/or mass is
propagated through the system.  This may be done by specifying how varying quantities within the
system (temperature, pressure, fluid velocity, and saturations) change as functions of time.  Such
varying quantities may be viewed as signals because they measure excitations and responses of the
system.  Signals play a dual role: First, they are used to describe the performance of reservoir
operations, frequently in conjunction with forward models that forecast transient flow behavior and
production of fluids from wells in the system.  Second, signals carry information that is needed in
inverse problems to determine rock properties, as well as the interactions among various fluid and
formation features in the complete reservoir.   This dual role of signals suggests that interpolations
of pressure and rock properties between wellbores involves a circular modeling process with
forward and inverse flow solutions.  On the one hand, interpolations of pressure data must satisfy a
forward mass balance equation, which depends upon values for spatially-distributed rock properties
(porosity and absolute permeability).  On the other hand, inverse models are solved for values of
absolute permeability between wellbores from interpolated pressure and pressure-gradients, which
must ultimately satisfy the forward mass balance equation and measured data.  An iterative forward-
inverse (F-I) process, alone, achieves mutually consistent interpolations of pressure, pressure-
gradients, saturations, and permeabiltiy that finally satisfy both the forward and inverse flow
equations.  All of the interpolated variables must additionally respect signal-processing principles
for sparse sampling effects.  In other words, the forward, inverse, and signal modeling processes are
fundamentally inseparable.  Hence advances in F-I modeling will play a potentially pervasive role in
optimization of monitoring strategies, estimation of formation properties from sparse data, flow
predictions, uncertainty/sensitivity analyses, and re-evaluations of the subsurface behavior
consistent with signal theory as new data are obtained.
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Circular modeling, inverse modeling, and history-matching are variously related methods for
estimating porous media properties and fluid behavior between measurements in wellbores.  They
all address a critical technical obstacle that confronts every subsurface project:  Interpolations
between borehole data are non-unique;  and existing parameter estimation methods are
constrained either weakly by, or at variance with, essential laws of physics, mathematics, and
signal-processing principles between datum points.  Such parameter estimation problems are
clearly ill-posed because material properties can never be sampled and measured perfectly, at any
physical scale.  So physical properties deduced from finitely sampled data (e.g., for fluid
distribution, pressure, permeability, porosity) will always be distorted to some degree, which makes
predictions of future flow behavior, production yields, and costs subject to more or less uncertainty.
The fact that an indefinite number of admissible parameter realizations generally exists for
discretely sampled data does not mean that subsurface parameter estimation is meaningless.  It
indicates that well-founded and well-executed concepts of physics, mathematics, and signal-
processing are needed to extract maximum information from the available data.  The techniques
used should consider both hard and soft data; and they should ultimately encompass sensitivity
coefficients, best solutions, and suitable measures of uncertainty  propagation.

In addition to manual history-matching methods, numerous deterministic and/or statistically-
based inverse theories and numerical algorithms (codes) have been advanced over the past twenty-
five years.  A common thread is that all of the methods have significant shortcomings at this time.
For more detailed descriptions of individual inverse methods, one can consult numerous review
articles, text books, and surveys [Zimmerman et al, 1998; McGlauglin and Townley, 1996; Carle
and Fogg, 1996 a and b; Sun, 1994; Newman and Orr, 1993; Gelhar, 1993; Dagan, 1989; Carrerra
and Newman, 1986a; Yeh, 1986; and Beran, 1968].  We therefore reviewed at the outset of Phase I
the full backdrop of physics principles and inverse solution techniques that have been applied in
porous media flow problems.  Noted immediately was the fact that, although physical systems
sometimes behave deterministically, they are nonetheless stochastic in their basic nature because
fundamental uncertainties exist at all scales of measurement. Hence both dynamics and statistics
must be considered in order to extract essential information from measured data.

To review the fundamental basis of stochastic modeling one looks to kinetic theory, where
dynamical and statistical axioms of physics are used to generate continuum flow equations of mass,
momentum, and energy balance. Two theoretically equivalent approaches are found: one is a
random field approach, and the other is represented by a heirarchy of statistically averaged moment
PDEs1.  A moment PDE approach is used in this project because, among other factors, new PDE
software tools have recently become available to help resolve classic long-standing difficulties
associated with non-uniqueness, noise, nonlinearity, mathematical instability, and inadequate
numerical PDE solution methods that previously thwarted progress in moment PDE approaches2.
The physics and mathematical techniques developed in this F-I modeling approach may also serve
well in several other existing stochastic and least-squares methods, as well as in manual history-
matching approaches to parameter estimation.   

                                                
1 Both quantum and classical mechanical representations have been applied to analyze stochastic systems in diverse
technical problems for several decades, as discussed and referenced in the Theory section that is presented in Appendix
A.

2 Interested readers may wish to peruse the Theory section in Appendix A to examine other factors that presently
recommend consideration of the moment PDE approach.
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FlexPDE and PDEase [Nelson,1998, and Backstrom, 1994,1998] are two commercially
available toolkits that provide state-of-the-art numerical PDE solution techniques and automated
code-writing capabilities for solving diverse scientific problems.  They enable general practitioners
to solve the nonlinear PDE systems that arise in F-I reservoir modeling, where the underlying
assumptions of alternative Fourier-analysis-based inverse and signal-processing techniques do not
generally apply.  These toolkits have yielded high levels of accuracy and work-saving economies in
the development of this F-I modeling methodology by their effective utilization of novel code-
generation software.  Some of the most robust adaptive-grid PDE solution methods that have
emerged in applied mathematics research over the past twenty five years are the “engines” in these
toolkits.  (Additional applications of PDEase and FlexPDE in diverse disciplines can be seen in the
text by Backstrom [1998].)  The FlexPDE toolkit by Nelson [1998] has been used to solve all of
the examples presented in this report. Looking ahead, extensions to 3-D reservoir modeling in the
out-years will be paced by the performance of recently released 3-D FlexPDE software.

A formidable problem in parameter estimation techniques is the need to effectively manage
noise effects.  Noise in stochastic simulations may correspond to both physical and non-physical
sources.  Physical noise sources would be associated with natural fluctuation phenomena in the
flow system, per se, and with physical measurement processes.  Non-physical noise sources would
include interpolations of sparsely sampled data, faulty conceptual models, and numerical errors in
forward and inverse model simulations.  Numerical PDE solution errors and faulty concepts are
problematic in model simulations because they frequently cannot be distinguished from physical
effects.  They may then debilitate one’s capacity to deal effectively with the legitimate problems
posed by non-uniqueness and mathematical instability.  It was thus important to identify and
eliminate at the outset not only such non-physical noise sources as numerical PDE solution errors
but also failures to respect signal-processing principles for sparsely sampled data.  The practical
working principle being applied here is that the space of admissible, mutually-consistent
permeability and pressure realizations is expected to shrink as increasingly restrictive constraints,
including elimination of non-physical noise and other modeling artifacts, are used to condition
parameter realizations.  Some key advances by Gelinas et al [1998, and this report] enabled the F-I
methods to apply this working principle productively in Phase I.  Included in these advances are:  

• Novel interpolation techniques:  

A modified finite element method was constrained to agree with wellbore measurements
while solving forward and inverse flow equations.  Resulting flow solutions respect the
discrete wellbore data and are, moreover, intrinsic physics-based interpolators of pressure
and permeability between wellbores.

• Spatial filtering techniques:

Flow data interpolations must be filtered (smoothed) so that their spatial frequency
spectra are consistent with discrete sampling principles [Bracewell, 1986; McGillem and
Cooper, 1984].  Ancillary PDEs were developed to spatially filter both pressure and
pressure-gradients in physical configuration space consistently with forward and inverse
PDE solutions.  This technique enables one to effectively calibrate nonlinear continuum
flow solutions (interpolations) with discretely sampled data.
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• Simultaneous solution of F-I and spatial-filtering PDEs:  

Nonlinear systems of forward and inverse flow PDEs were solved simultaneously with
spatial-filtering PDEs in order to both suppress noise and help mitigate mathematical
instability.

• F-I model calibration techniques:  

The inverse flow equation was solved and calibrated with permeability data according to
rigorous Cauchy criteria, which are otherwise violated in many parameter estimation
techniques.

• Novel PDE solution schema:  

Continuum mappings of flow characteristics were solved from pressure data with a novel
PDE scheme, in lieu of calculating discrete characteristics from ordinary differential
equations (ODEs) that do not fill the physical domain.  This schema facilitates rigorous
calibrations of inverse PDE solutions according to Cauchy criteria.  

• Dynamic unstructured adaptive-grid PDE solution methods:  

Numerical errors and other modeling artifacts were reduced markedly by using dynamic
unstructured adaptive-grid methods to solve both signal-processing and F-I flow PDEs.
This improves the resolution of both permeability images (inverse solutions) and flow
images (forward solutions) on a self-consistent basis.

These composite F-I modeling techniques help mitigate the classic perils posed by mathematical
instability, noise, and non-uniqueness.  To execute these techniques successfully, it was necessary
to employ the FlexPDE toolkit [Nelson,1998, and Backstrom, 1998].  Pending publication of
detailed technical articles in scientific journals, the stochastic theoretical basis and mathematical
techniques applied in this work are addressed briefly in Appendices A and B.  A brief description
of FlexPDE toolkit features is presented in Appendix C.  Such key aspects of parameter estimation
as 3-D simulations, uncertainty propagation, sensitivity coefficients, “best solution” techniques,
etc., were not included within the scope and resources of Phase I.  There appears to be considerable
promise, however, for significant new advances to be made in some of these omitted topics in the
near future, as a natural extension of the F-I modeling and PDE solution techniques used in the
present work.

IV.  Examples and Results

This section examines results of numerous test cases that were posed and solved in terms of a
black oil model (BOM) for oil-water systems from petroleum engineering.  The BOM represents a
two-phase (oil-water) immiscible, incompressible flow system, with zero capillary pressure.  It
provides the conceptual model basis for two example problems that are used in this section to
assess the feasibility of the F-I modeling concepts and mathematical techniques.  The example
problems were constructed to have ground-truth solutions for verification purposes.  One example
problem is an idealized water-flood scenario on a 2-D horizontal rectangular domain with zero
gravitational forces;  and the other is a 2-D vertical oil-dome water-driven model with gravitational
forces.  The flow systems in all cases are described by the mean flow equation, with stochastic
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residual flux terms taken to be negligible.  Residual fluxes are second-order statistical fluctuation
terms that contribute to the rate of change of the dependent variable in the mean flow equation.
They act like other source terms that generally appear in the mean flow equation.  Their neglect is
not a serious limitation in proof-of-concept assessments at this stage of development.  (Additional
implications pertaining to this assumption are discussed in Appendix A;  and a detailed
development of the BOM is presented in Appendix E.)  

Dynamic adaptive-grid PDE solution techniques in the FlexPDE toolkit facilitate problem
verifications.  They enable users to arbitrarily specify a PDE solution accuracy that is to be achieved
in each problem run.  The PDE solver adapts unstructured spatial and temporal numerical grids
automatically in an iterative numerical solution process.  Numerical integration cycles are executed
in FlexPDE until both global and local accuracy criteria are satisfied internally.  If a user-specified
accuracy goal is not attained, a code run will usually not terminate gracefully.  But in all instances a
record of diagnostic information reports the state and progress of the numerical solution process
during each attempted run.  The combination of such accuracy-controlled adaptive-gridding
methods with informative run-time performance diagnostics accelerates test case verifications,
largely because failures of the PDE solver to deliver demanded accuracy (within practical limits)
will usually lead quickly to the identification of inappropriate concepts, mathematical errors,
inconsistent data, inadequate or misapplied algorithms, or other sources of error.  To practically
verify that PDE solutions have ‘converged’, several runs are typically executed with progressively
greater accuracy demanded in each successive run, until the solutions are deemed to have
approached a ‘true solution’, or not.  If code changes, including entirely new conceptual or
mathematical models are required, the automated code-writing features in FlexPDE readily produce
new codes, which further facilitate code and test-problem verifications.

IV-1   Detailed Descriptions of Example Problems and Results

Example Problem 1:  Horizontal (2-D) water-drive problem.

Forward Model Verifications

The first example problem (Figure 1) simulates an idealized water-flood scenario on a 2-D
horizontal rectangular domain, with zero gravitational forces.  This problem was also considered in
a recent article by Saad and Zhang [1998].  The BOM formulation in equations (E-1) – (E-9) of
Appendix E was used in Saad and Zhang’s work, and in our work here.  Since the permeability is
constant in this example, the inverse solution for K is trivial.  So the objective in this example was to
benchmark the dynamic adaptive-grid finite element solution techniques in FlexPDE  against a
current alternative adaptive-grid method, such as the one applied in the IMPES (Implicit Pressure-
Explicit Saturation) approach [Aziz and Settari, 1983] by Saad and Zhang [1998].  
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Figure 1 – 2-D horizontal oil production water injection model

It is worthwhile to briefly point out some of the immediate contrasts and similarities between
these respective approaches.  In Saad and Zhang’s work the pressure equation was discretized
using a finite volume method; and the resulting linear system of algebraic equations in the pressure
variable (for the latest calculated saturation variable) was solved by a bi-gradient-like method.  For
the saturation equation, they use a modified and robust upwind scheme (following the MUSCL
approach, an acronym for Monotonically Upstream-centered Scheme for Conservation Laws) that
seeks to reduce the diffusive effect that is intrinsic in rudimentary upwinding procedures [Van Leer,
1977; Randall, 1990].  

By way of contrast, the FlexPDE toolkit used in the F-I approach solves the pressure (P) and
saturation (S) equations simultaneously, rather than sequentially.  The dynamic adaptive-grid
solution algorithms incorporate finite element Galerkin methods of order 2 or 3 on the spatial
domain.  The temporal discretization is a fully implicit BCE (Backward Cauchy-Euler) method.  As
a result of solving in P and S simultaneously, the discretized equations generated with the Galerkin
technique obviously form a nonlinear system of algebraic equations.  In order to solve the nonlinear
algebraic system, it is first linearized using a variant of the Newton-Raphson method.  With today’s
robust solvers for linearized algebraic systems, many challenging nonlinear PDE systems can be
solved accurately.  But there is a price to be paid, software-wise. Each different type of PDE
(elliptic, hyperbolic, linear, nonlinear, mixed types, etc.) can present a host of demands, of widely-
varying severity, upon solvers of the resulting algebraic systems.  So numerous matrix solution
options are made available to users of general-purpose PDE toolkits.  From the several solution
options available in the FlexPDE toolkit, we found that a variant of Lanczos’ method was sufficient
for solving simultaneous equations for S and P in the present example [Lanczos, 1997].  An
interesting finding was that, although the time discretization in FlexPDE  is only first-order accurate,
it nonetheless seems to provide very satisfactory answers in the reservoir problems addressed so
far.  This result was satisfying in view of  the numerical difficulties that might have been anticipated
in solving the time-evolving saturation equation simultaneously with the instantly-equilibrated
pressure equation.  We note further that it was important to stabilize the saturation equation in the
present approach by adding a regularizing term, ε∆S, to equation (E-21).  (The notation, ∆S,
represents the Laplacian of the water saturation).  Values of ε are made sufficiently small to retain
the basic integrity of the original saturation PDE.  Finally, the numerical approaches in both Saad’s
work and the F-I techniques refine and merge grid cells according to criteria based on various
internal estimates of local truncation error, as well as global measures.

no fluid flow
on boundaries

Sw (x,y,0)=0
So (x,y,o)=1.0

Pin =1.5 MPa

Sw (t)=1.0

Pout =1.0 MPa

Sw =recycle B.C.

no fluid flow
on boundaries

Sw (x,y,0)=0
So (x,y,o)=1.0

Pin =1.5 MPa

Sw (t)=1.0

Pout =1.0 MPa

Sw =recycle B.C.
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The following numerical values, in mks units, are assigned to reservoir parameters in this
example problem:

K = 5x10-13  m2, (absolute permeability)

ϕ  = .33, (porosity)

µw =  1x10-3  Pa.s, (water viscosity)

µo =  4 x10-3  Pa.s. (oil viscosity)

The domain Ω is taken formally to be the rectangular region (Figure 1),

Ω = {(x,y) :  0 ≤ x ≤ 100m,  0 ≤ y ≤ 50m}.

A water-injection well with an effective radius of 0.5 meter is located near the north-west corner
of the domain and is centered at (6.25, 43.75m).   An extraction well of the same radius is placed, in
similar fashion, near the opposite (south-east) corner.  Although the size of the wellbore may seem
to be large, it has no major negative repercussions when modeling at field scales, especially away
from the well location. (It is often possible to adjust the pressure BCs fairly accurately in going
from one well size to a concentric and relatively larger size.)  Simulations that use the actual well
size will tend to over-grid unnecessarily in the vicinity of the well, unless, of course, one wishes to
simulate flow behavior within the immediate wellbore neighborhood, possibly including flow within
the wellbore itself.  The approach followed for field-scale simulations in the present work simply
excludes the region interior to each well from the definition of Ω.  In this way, the boundary of Ω
consists of exactly three closed curves: the rectangle perimeter, Γ1, and the injecting and extracting
well circumferences, Γ2 and Γ3, respectively.  The boundary Γ1 is assumed to be impermeable.  That
is, the outward normal component of the flow velocity, V • n, vanishes over Γ1, which translates to
the pressure BC, ∂P/∂n=0,  where n is the outward normal vector to Γ1.  Pressure values of 1.5 and
1 MPa are assigned on Γ2 and Γ3, respectively.  Also notice that, because the problem of
determining the pressure is only a BVP, these boundary assignments are sufficient to solve for P at
any instant in time.

In solving the saturation equation (E-21), the initial saturation, as well as the saturation
specification along some appropriate Cauchy curve for all t > 0, must be known. It can be shown
that, in this case, the curve Γ2 in Figure 1 is an admissible Cauchy curve because: (i) the saturation
is always maintained at the prescribed value of 1.0 for all t > 0, and (ii) less trivially, all characteristic
curves emanating from Γ2 span the entire domain, Ω.  On Γ1 , the boundary integrals for the
saturation equation can still be set to zero, because its integrand is a multiple of V•n, where V is the
velocity and n is an outward normal.  At the extraction well, however, the boundary condition is
actually a part of the solution process, which means that no boundary specification is required there.
The FlexPDE toolkit has a provision that enables users to implement the ‘no-specification’
boundary condition according to the finite element ‘recycle’ techniques that were discussed, for
instance, by Oden et al [1986].  This option requires the integrands of certain boundary integrals to
be provided by the user in the FlexPDE problem setup commands (Appendix D).

The initial and boundary conditions for this example are summarized as follows:

Initial conditions, t = 0:

     S = 0 on Ω,
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     P = P0, where P0 is the solution of equation (E-22), with S=0 and the pressure BCs listed
next.

Boundary conditions:

   On Γ1:  V•n = fV•n = 0 for t ≥ 0.

   On Γ2:  P = 1.5 106 Pa for t ≥ 0,  and S = 1 for  t > 0.

   On Γ3:  P = 106 Pa for t ≥ 0,  and a ‘no-specification’ BC for S.

Results for this test example are shown in Figures (2) – (7).  Figure 2 shows the isocontours of
water saturation as a function of x and y at t=100 days. The adaptive-grid algorithm in FlexPDE is
clearly tracking the water saturation front. The abbreviated text  immediately beneath the figure lists
the FlexPDE input file name (descriptor file), the current time-step cycle, total elapsed time in
seconds, time-step size in seconds, number of spatial grid nodes utilized in this stage, the
corresponding number of cells, the RMS error over the entire domain, and the total volume of
displaced oil up to this time.  Because no injected water has yet reached the extraction well, we
confirmed that the volume of displaced oil is equal to the volume of injected water.  Figure 3 shows
the self-adapting grid that is used at the specific cycle (113) of the FlexPDE solution process.  The
density of grid nodes is high all along the current location of the moving water saturation front and
also near the injection well, where the saturation gradient is steepest.  The water and oil saturation
gradients are null at the extraction well at this time (100 days); so the cluster of cells in the vicinity
of the extraction well is only there for resolving the local pressure gradients of oil extraction and for
logical considerations related to the geometry of that region.  Figure 4 shows a snapshot of the
saturation distribution after 200 days; and Figure 5 displays the first-time arrival of the water
saturation front at the extraction well after 340 days.  Figure 6 exhibits in greater detail the so-called
water break-through in a square with sides equal to eight well-diameters, about the extraction well.
Finally, Figure 7 displays the oil production and the production-rate history curves.  The latter curve
clearly indicates the instant at which the water break-through occurred.  The evolution of disparate
saturation and pressure gradients, including the fluid fronts and flows near extraction wells
(associated with robust outflow boundary conditions) are sharply resolved relative to other
numerical solution techniques that are used widely in forward reservoir models.  These are
obviously significant factors for accurately determining the times, paths, and rates of fluids arriving
at prodution wells.  They take on additional significance in F-I parameter estimation methods,
because inverse PDE solutions are reliant upon the coupled forward model solutions.  The accuracy
of forward model solutions and derivative pressure gradients is all the more important because
forward solutions carry the information from which permeability distributions are determined with
the inverse PDEs, as in the second example problem for an oil-dome scenario.
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OW Water-Drive Homogeneous Sandstone

SAAD2W1:  Cycle=113  Time= 8.64e+6  dt= 2.4442e+5  p2  2444 Nodes  1183 Cells  RMS Err= 0.0019
Integral=  589.1901
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Figure 2 – Isocontours of water saturation after 100 days

OW Water-Drive Homogeneous Sandstone

SAAD2W1:  Cycle=113  Time= 8.64e+6  dt= 2.4442e+5  p2  2444 Nodes  1183 Cells  RMS Err= 0.0019
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Figure 3 – Corresponding unstructured adaptive grid distribution after 100 days.
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OW Water-Drive Homogeneous Sandstone

SAAD2W1:  Cycle=147  Time= 1.728e+7  dt= 2.939e+5  p2  2710 Nodes  1315 Cells  RMS Err= 0.0016
Integral=  1235.334
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Figure 4 – Isocontours of water saturation after 200 days

OW Water-Drive Homogeneous Sandstone

SAAD2W1:  Cycle=206  Time= 2.9376e+7  dt= 2.3333e+5  p2  1909 Nodes  920 Cells  RMS Err= 0.0019
Integral=  2206.552

18:52:14 6/24/98
FlexPDE 2.04

X

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0

Z

-30.0

-20.0

-10.0

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

a
a

a

a
a

a

a

a

a

a

a

a

a

b

b

c

c

d

d e fg

h

h i

j

k

l

m
n

o

o
p
q

r
s

s

max  1.00
u :  1.00
t :  0.95
s :  0.90
r :  0.85
q :  0.80
p :  0.75
o :  0.70
n :  0.65
m :  0.60
l :  0.55
k :  0.50
j :  0.45
i :  0.40
h :  0.35
g :  0.30
f :  0.25
e :  0.20
d :  0.15
c :  0.10
b :  0.05
a :  0.00

Figure 5 – Water saturation at break-through after 340 days



DeepLook Phase I Final Report UCRL-ID-126377 February 1999

15

OW Water-Drive Homogeneous Sandstone

SAAD2W1:  Cycle=206  Time= 2.9376e+7  dt= 2.3333e+5  p2  1909 Nodes  920 Cells  RMS Err= 0.0019
Integral=  13.53013
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Figure 6– A blow-up of the water saturation front arrival at extraction well (see Figure 4).

 Various Production Curves

PCURVES:  Grid#4  p2  33993 Nodes  16692 Cells  RMS Err= 16720.
Integral(a)=  3.909453e+7 Integral(b)=  3.628479e+7
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      calculated at the extraction well from t = 0 to 1000 days .
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Example Problem 2:  A vertical (2-D) oil-dome problem

 This example (Figure 8) considers a vertical 2-D cross-section of an oil-dome that loosely
incorporates Pampano-like field features.  An extraction well with an assumed down-hole pressure
value (maintained by pumping) is placed near the dome crown.  Hydrostatic pressure of a
supporting aquifer is assigned at both of the vertical sides near the rectangle base.  This is the only
place where water can flow into the dome. All pressure assignments are assumed to be time-
invariant; and all of the remaining boundaries are assumed to be impermeable.

Figure 8— 2-D vertical oil production water-drive model

A major objective in this example (addressed in Case 3 below) was to determine the capacity of
the F-I modeling method to calculate a known heterogeneous permeability distribution in a
reservoir, given sufficiently dense ‘measurements’ of pressure and permeability.  The working
principle is: If an inverse method is unable to produce a high-fidelity image when given sufficient
data, there is little reason to expect the method to yield credible results for real situations with
sparse data.  The purpose of Cases 1 and 2 below was to verify that the FlexPDE solution
algorithms are capable of resolving sharp saturation fronts and large disparate pressure gradients in
forward solutions, as well as sharp interfaces between low- and high-permeability formation sub-
structures.  These cases are important because failures to resolve physical gradients adequately in
simulations frequently yields erroneous estimates of fluid front propagation in heterogeneous
formations, which may in turn yield erroneous estimates of where, and how much oil may be

k2k2

No fluid flow

pwell

Underlying aquifer

pbnd
pbnd

So(t=o)=1.0
Sw=1.0Sw=1.0
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remaining over time in well-field design simulations and operational decision-making. (See Figures
9-16.)  

The governing PDEs for this example are obtained by including gravitational terms in equations
(E-21) and (E-22), which were given previously (Appendix E).  Heterogeneity in this simplified
dome model is modeled with two saturation-independent permeabilities:  KC represents the
permeability of channel sands, and KI  represents interchannel permeability.  Rock and fluid
properties, including the quadratic relative permeability, are taken to be the same here as in the
previous water-flood example, with KC = K.  Depending on values of the ratio, R = KI/KC, the
relative roles of individual physical processes, e.g., entrapment, refraction and retardation, are
problem-specific and can significantly affect the transient evolution of recovered and remaining oil
over time, as will be evident in the results displayed in Figures (9) – (14) for a case with R = 1/10
and in Figures (15) and (16) with R = 0.  The results obtained in these two cases clearly indicate the
capabilities of our approach in tracking the complex evolution of saturation fronts, as they split,
refract, and undergo retardation while propagating through the reservoir.

Forward Model Verifications with Densely Sampled Data Sets

Case 1:  Forward solution for pressure and saturation with R = 1/10

In this first case, with R = 1/10, it can be seen in Figures 8 and 9 that water from the supporting
aquifer enters the lower vertical sides of the dome and drives oil through portions of the two low-
permeability interchannel sub-structures, as well as through the more permeable channels.  Figure
10 indicates how the unstructured numerical solution grid adapts dynamically to anticipate, and
follow, the moving saturation fronts simultaneously with pressure gradients near the extraction well.
The numerical grid undergoes both refinement near large gradients and un-refinement in parts of
the domain that do not contain large gradients.  Figures 11 and 12 show the arrival of  first water
saturation front at the extraction well at 200 days.  The saturation front on the right-hand-side of the
dome has not yet arrived at the well.  Nor has the saturation front yet made its way through the
relatively narrow channel between the two low-permeability sub-structures in the central-dome
region.  The water fronts have however continued to penetrate the outer regions of the  low-K
substructures.  Figures 13 and 14 show the arrival of the second saturation front at the extraction
well at 220 days.  The lagging saturation front has started to enter the narrow channel between the
two low-K sub-structures.  At 420 days we observed that significant oil (approximately 20%) was
retarded in the low-K interchannel sediments.  After 4 years, essentially all of the oil in the dome
has been produced in this case.   
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OW Water-Drive Heterogeneous sand/silt

DMHSS1:  Cycle=121  Time= 8.64e+6  dt= 2.1502e+5  p2  5912 Nodes  2876 Cells  RMS Err= 0.0016
Integral=  1060.421
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 Figure 9 –  Isocontours of water saturation after 100 days with R = 1/10

OW Water-Drive Heterogeneous sand/silt

DMHSS1:  Cycle=121  Time= 8.64e+6  dt= 2.1502e+5  p2  5912 Nodes  2876 Cells  RMS Err= 0.0016
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Figure 10 –  Dynamically generated grid after 100 days
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OW Water-Drive Heterogeneous sand/silt

DMHSS1:  Cycle=171  Time= 1.728e+7  dt= 2.2799e+5  p2  5936 Nodes  2902 Cells  RMS Err= 0.0019
Integral=  2140.259
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             Figure 11 – First time arrival of water break-through  after 200 days

OW Water-Drive Heterogeneous sand/silt

DMHSS1:  Cycle=171  Time= 1.728e+7  dt= 2.2799e+5  p2  5936 Nodes  2902 Cells  RMS Err= 0.0019
Integral=  12.27777
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 Figure 12– Blow-up of first time arrival of water break-through at extraction well
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OW Water-Drive Heterogeneous sand/silt

DMHSS1:  Cycle=187  Time= 1.9008e+7  dt= 2.9579e+5  p2  5954 Nodes  2912 Cells  RMS Err= 0.001
Integral=  2324.401
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 Figure 13 – Second water break-through at 220 days

OW Water-Drive Heterogeneous sand/silt

DMHSS1:  Cycle=187  Time= 1.9008e+7  dt= 2.9579e+5  p2  5954 Nodes  2912 Cells  RMS Err= 0.001
Integral=  23.30921

17:30:43 6/19/98
FlexPDE 2.04

X

45.0 48.0 51.0 54.0

Z

48.0

51.0

54.0

57.0

60.0

a

a

aa

a

a
a

b

b

c

c

c

c

d

d

d

d

e

e

e

e

f

f

f

f

g

g

g

g
h

h

h

h

i

i

i

i

j

j
j

j

k

k
k

k

l

l

l
m

m

m

n

n

n

o

o
p

q

s
( hkmeter-frac,hkmeter-tfrac+w20,  tfrac

max  0.49
q :  0.48
p :  0.45
o :  0.42
n :  0.39
m :  0.36
l :  0.33
k :  0.30
j :  0.27
i :  0.24
h :  0.21
g :  0.18
f :  0.15
e :  0.12
d :  0.09
c :  0.06
b :  0.03
a :  0.00
min -0.00

   Figure 14– Blow-up of second water break-through at extraction well
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Case 2:  Forward solution for pressure and saturation with R = 0

The permeability in natural systems may vary by many orders of magnitude.  In such instances
the contrast ratio, R, may approach zero in parts of the formation.  The problem considered in this
second case is identical to Case 1 above, except that R is here taken to be zero.  The results shown
in Figure 15 indicate that, at 100 days, the water saturation front has not penetrated the low-K sub-
structures, which is in distinct contrast to the corresponding results in Case 1.  Therefore retardation
effects, in which water resides for some significant amount of time in the interchannel sediments
before exiting through the downstream interface(s), are practically negligible in the present case.  It
is apparent in Figure 15 that saturation fronts simply go around the interchannel sub-structures;
and the flow evolution pattern is somewhat different than when significant retardation occurs.  Such
behavior potentially affects oil production histories and thus remaining oil.  Figure 16 shows that,
after 420 days of pumping, oil is possibly trapped in several areas: (i) beneath the concave-
downward regions of the low-K regions, (ii) in the narrow channel between the low-K regions, and
(iii) in the vertical column area above the narrow channel.  There is practically no retardation of oil
in the low-K sediments at any time.  After 2.3 years, approximately 70% of the oil has been
produced; and it appears that most of the remaining 30% is trapped, more or less indefinitely,
beneath the low-K substructure (with the larger concavity) on the left-hand-side of the dome.

The results in these cases (as well as others that are not included in this report) suggest that
correct handling of sharp saturation fronts and formation interfaces is important for simulating
histories of oil recovery, retardation, and trapping.  They further suggest that the shape, scale, and
permeability contrast of formation heterogeneities may be significant determinants of critical
transient flow processes in estimations of remaining oil.

OW Water-Drive Homogeneous Impermeable

DMHI2:  Cycle=109  Time= 8.64e+6  dt= 2.071e+5  p2  3710 Nodes  1728 Cells  RMS Err= 0.0029
Integral=  823.0667
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Figure 15 –  Isocontours of water saturation after 100 days for R = 0
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OW Water-Drive Homogeneous Impermeable

DMHI2:  Cycle=183  Time= 3.6288e+7  dt= 1.1208e+6  p2  4073 Nodes  1897 Cells  RMS Err= 0.0065
Integral=  2557.32
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FlexPDE 2.04
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Figure 16 –  Isocontours of water saturation after 420 days for R = 0

Inverse Model Verifications with Densely Sampled Data Sets

Case 3:  Inverse solution for permeability (K) from dense pressure data

The purpose of this example was to test the capacity of the inverse solution method, alone, for
calculating a known heterogeneous permeability distribution from ‘sufficiently dense’
measurements of pressure at wellbores.  As indicated previously,  an inverse method that is
expected to yield credible results for real situations with sparse data must first be able to produce
high-fidelity images when given sufficiently dense data.  The actual number of datum points that
would constitute sufficiently dense sampling is generally nebulous, owing to both the problem-
specific and nonlinear nature of reservoir parameter estimation problems.  So benchmarking against
ground-truth examples is imperative for gauging the potential effectiveness of any inverse
technique.  From signal-processing principles, pressure data are considered to be ‘sufficiently
dense’ when simple interpolations (with F-I finite element nodes and basis functions) between
datum points resolve the range of spatial frequencies that constitute good permeability images.
High-quality images of permeability were obtained in the present case when many thousands to
hundreds of thousands of pressure datum points were available.  The results presented in Figures
17-19 were obtained with approximately 200,000 discretely sampled pressure datum points (Figure
20).  The ‘measured’ pressure values were actually abstracted from ground-truth values at discrete
wellbore locations;  and spatial filtering PDEs were not included in this case.

Several observations can be made from results obtained in this case in Figures 17-19.  First,
considerable resolving power is attainable with the F-I techniques and the FlexPDE solution
algorithms.  The image quality obtained in Figure 19 is representative of many runs that were
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solved for this case, with some problem-specific differences that will be indicated later.  Hence this
case provides a useful benchmark for examining effects of data sparsity, which is always a central
issue in practical reservoir applications.  Finally, the image in Figure 19 demonstrates the
fundamental fact that images from a finite number of datum points cannot be truly perfect (unique)
- - no matter how densely they’re spaced - - because some information is always lacking between
the datum points.  Although not a dramatic effect, as in sparsely sampled problems that appear later,
spatial filtering was nominally beneficial in imaging densely sampled data.  Problem-specific
factors that affect images in these F-I solutions include:  data density/sparsity, permeability contrast
ratios at rock interfaces, information propagation modes, and robustness of the numerical
algorithms.

Although spatial filtering PDEs were not incorporated in this case, the inverse solution process
was nonetheless challenging for reasons that follow in a somewhat detailed discussion. We first
note that, because fluid pressure equilibrates almost instantaneously, it satisfies the steady-state flow
equations (E-22) and (E-19) at any given time(s).  Consequently, the basic inverse technique
(Appendix B and Gelinas et al [1998]) applied here solves the steady-state inverse equation (E-22)
for the sum of all mobilities, K•M (Appendix E).  Data that has been measured at some time shortly
after pumping starts, t = 0+, and before fluids have changed from their initial conditions, are used to
solve for K•M (and K) in this test case.  The discretely measured pressures at t = 0+ are, in fact, the
ground-truth values sampled at 200,000 datum points (Case 1).  At t = 0+, fluid saturations are equal
to their initial values, So = 1.0 and S = Sw = 0 everywhere in the dome; and the total mobility, M, is
thus given by equation (E-18). The remaining information that is needed to solve the inverse
equation are values of K on appropriate Cauchy lines (Appendix B).  The vertical boundaries near
the dome floor, where water enters/leaves the oil-dome, are taken to be Cauchy lines because all
characteristics (streamlines) in the domain emanate from these boundaries and terminate at the
extraction well.  The ‘measured’ values of K on the Cauchy lines are K = KC = 5x10-13 m2.  (We
note here that Cauchy lines can be selected in many different ways.  This is an area that is under
continuing study and promises to produce even better images from fewer datum points in future
works.)

The above process of solving the inverse equation for K is a fair test of the techniques under
development here, because the algorithms have no way of knowing that the 200,000 ‘measured’
datum points are identically equal to the ground-truth values at discrete wellbore locations from
Case 1.  Figures 17 – 19 show an evolving development of the K-distribution as its ultimate
solution develops progressively from an arbitrary starting value (for K) by an iterative process.  In
these solutions, equation (E-22) was regularized and solved for K in three stages.  Progressively
smaller values were assigned to the regularization coefficient, which maintains the integrity of the
original hyperbolic PDE, in each stage.  (Recall previous discussion that defined regularization of
the hyperbolic saturation equation for the horizontal water-drive problem.)  The regularized inverse
equation in the present case is, however, much more difficult to solve than the PDEs considered in
the previous water-drive problem (example problem 1).  The linearized algebraic system in this case
is so close to being singular (very large condition number) that it requires a much more robust
solution technique than was used in previous examples.  We therefore found it necessary to use (in
FlexPDE ) a Vandenberg conjugate gradient algorithm with incomplete Cholesky pre-conditioning
in order to solve for K in this case [Vandenberg, 1988; Jea and Young, 1983].

It is apparent in the captions of Figures 17 – 19 that the number of adaptive-grid nodes tends to
increase synchronously with the quality of the K-images, until the demanded accuracy is achieved
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in each stage of the solutions.  From a signal-processing point of view, increasing the number of
spatial grid nodes is tantamount to incorporating higher and higher spatial frequency components,
which enhance the spatial resolution of the K-images in each stage of development.  Viewed as an
input-output system, the output solutions from FlexPDE are K-images composed of spatial
frequency components that were ‘signalled’ by the input pressure (Figure 20) and the initial
Cauchy data acting through the inverse flow equation.  The flow equation acts essentially as a
nonlinear transfer function.  The quality of the image depends upon the capacity of available grid
nodes to resolve the spatial frequency components of the K-image consistently with the sampling
density.  Clearly, a failure to solve the inverse flow equation with high-accuracy would add
distortion to the output image of K, which could not be distinguished from noise (or errors) in the
input pressure data.  FlexPDE, like many other robust PDE solvers, achieves high levels of accuracy
by using both local and global error diagnostics to dynamically control the location, nature, and
extent of adaptive grid refinements and un-refinements.  The utility of unstructured adaptive-grid
PDE solvers in this work stems largely from their capacity to place grid nodes where they are most
needed, without fixed topological structure constraints, and when they are most needed for resolving
physical features that are commensurate with the information contained in the discretely sampled
pressure and permeability data.

Returning to the results in Figure 19, the permeability contrast ratio was equal to R = 1/10; and
the K-isocontours conform generally to the shape of heterogeneity substructures in the oil-dome.
But, even with extremely dense datum points the image of the low- and high-permeability interfaces
in Figure 19 is not completely sharp.  In addition to the absence of information between datum
points, image resolution can be affected by such factors as numerical error (from PDE
discretization schemes, matrix condition, and regularization), data noise, derived pressure gradient
error, and possibly effects associated with mathematical instability.  Notice that errors from noisy
Laplacians of pressure in many other inverse techniques do not occur here, because finite element
methods avert Laplacian evaluations via an integration-by-parts of divergence terms in flow
equations.  While results to-date are certainly promising, we have gained deepened insights during
Phase I that will potentially yield still greater levels of image resolution from less data in future
efforts.
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OW Water-Drive Homogeneous Impermeable

DMINV4:  Grid#2  p2  834 Nodes  388 Cells  RMS Err= 0.0447
Integral=  3783.017

14:18:40 6/27/98
FlexPDE 2.04
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             Figure 17.  Recovery of K from densely sampled pressure data; 834 nodes; Stage 1.

OW Water-Drive Homogeneous Impermeable

DMINV4:  Grid#1  p2  1717 Nodes  817 Cells  RMS Err= 0.0239
Integral=  3917.034
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             Figure 18.  Recovery of K from densely sampled pressure data; 1,717 nodes; Stage 2.
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OW Water-Drive Homogeneous Impermeable

DMINV4:  Grid#1  p2  2471 Nodes  1175 Cells  RMS Err= 0.0326
Integral=  4048.382
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FlexPDE 2.04
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                Figure 19.  Recovery of K from densely sampled pressure data; 2471 nodes; stage 3.
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Figure 20.  Isocontours of densely sampled pressure data (t=0+ snapshot)

Inverse Model Verifications with Sparsely Sampled Data Sets

The purpose of the remaining cases in this report was to test the capacity of the F-I techniques
for producing credible images of heterogeneous reservoir formations from sparsely located
pressure ‘measurements’.  As was true in previous cases, the number of datum points that will be
needed to produce credible images from sparse data is nebulous.  Also, the potential role and
effectiveness of spatial filtering has not previously been established in this type of inverse method,
to the best of our knowledge.  We therefore benchmark representative cases against ground-truth
examples to measure the potential effectiveness of this inverse technique, having previously noted
the method-specific, problem-specific, and nonlinear nature of reservoir parameter estimation.
When dealing with sparse pressure data, the inverse solution technique described in Case 3 is
augmented with additional PDEs that spatially filter the derived pressure gradients. Spatial filtering
is necessary because interpolations that respect both the flow equation and the discrete data are
noisy.  Recall that pressure data were interpolated between wellbores by finite element solutions of
the flow equation, which were “clamped” to measured values at discrete wellbores.  Unless
conditioned by spatial filtering, the interpolations would not know that they must be “band-
limited” functions prescribed by undersampling theory [Bracewell, 1986].  Expressed in terms of
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Fourier transforms, undersampling of signals by discrete measurements produces images with the
high-frequency tail truncated beyond some spectral cutoff.  Values of the cutoff frequency are
related to the spatial intervals between measurements.  The truncated high-frequency information is
known to masquerade at lower frequencies in the cutoff spectrum; and this effect is referred to as
“aliasing”.  If the high-frequency tail is not too important, sparse sampling procedures produce
fair images.  If allowed to persist, high-frequency interpolation noise is magnified in derived
pressure gradients that are then used to solve the inverse flow PDE (equation (E-19)) for
permeability.  The basic technique for solving spatial-filtering PDEs simultaneously with an inverse
flow PDE is described in Appendix B for ground water flows.  See equations (B-17a) – (B-17d).
These techniques, with suitable modifications for dealing with transient snapshots of pressure and
other data, have been extended successfully to reservoir problems in Phase I.

Case 4: Sparsely Sampled Cases – Spatial Filtering Applied
Case 4 is actually made up of four individual problems in which a permeability image is

calculated from four sparsely sampled data sets composed of 1, 20, 75 and 300 pressure datum
points, respectively.  Each data set was abstracted at discrete measurement locations at time = 0+, as
in Case 3.  The full F-I method was applied to each of the data sets.  The resulting permeability
images are presented in Figures 21-24, proceeding from the least-sparse (300 datum points) to the
most-sparse (1 datum point) data sets.

The F-I solutions were stable; and the images were plausible relative to ground-truth in all cases
when due account is taken of data sparsity.  Figures 21 and 22 indicate that very credible images of
formation heterogeneity were obtained commensurate with the 300 and 75 datum points that were
given.   The image obtained from 20 datum points in Figure23 gives a plausible realization of low
permeability horizontally across the mid-region of the domain.  The image in Figure 24 was
calculated from a single pressure datum point ‘measured’  in the middle of the domain.  This case
confirms that the F-I method was stable in the most extreme conceivable circumstance, with one
pressure measurement.  There was, of course, other information supplied to the problem via the
‘known’ permeability and hydrostatic pressure values on Cauchy lines at reservoir-aquifer
interfaces, by ‘measured’ pressure conditions at the production well, and by the no-flow boundary
conditions on the remaining boundaries of the oil-dome.  The results in these cases are generally
representative of many other runs that were executed with widely varying numbers of ‘measured’
datum points.  In many cases with relatively sparse data (5 – 20 datum points) image resolution
sometimes exceeded our initial expectations from simple data-sampling/signal-processing
principles.  Image resolution improved progressively as the number of datum points increased, as
expected.  Finally, experience and insights gained in this initial phase of work suggested several
ways to possibly improve the quality of these images with fewer datum points in future work.



DeepLook Phase I Final Report UCRL-ID-126377 February 1999

29

Figure 21.  Calculated permeability image from approximately 300 pressure datum points, with
spatial filtering applied.
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Figure 22. Calculated permeability image from approximately 75 pressure datum points, with
spatial filtering applied.
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Figure 23. Calculated permeability image from approximately 20 pressure datum points, with
spatial filtering applied.
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Figure 24. Calculated permeability image from one pressure datum point, with spatial filtering
applied.

Case 5: Sparsely Sampled Cases – No Spatial Filtering Applied
The same data sets that were tested with the full F-I methodology above (Figures 21-24) were

solved here with spatial filtering eliminated.  The objective was to examine the potential benefits that
spatial filtering can provide.  The results were immediate and compelling.  Permeability solutions
were unstable and fraught with artifacts when pressure data was too sparse.  Specifically, the
unfiltered solutions in the oil-dome example were unstable when fewer than approximately 100
‘measured’ pressure datum points were used.  Figure 25 presents the image that was obtained
without spatial filtering in the case with 75 pressure datum points.  We also observed that images
obtained with no spatial filtering and 300 pressure datum points did not approach the quality of the
images shown in Figure 22 with spatial filtering applied for 75 datum points.



DeepLook Phase I Final Report UCRL-ID-126377 February 1999

33

Figure 25.  Permeability image calculated from approximately 75 pressure datum points.  With no
spatial filtering applied, this inverse solution was unstable.

IV-2  Synopsis of Examples and Results

Owing to the breadth of test cases, results, and diverse motivations in this section, we
present a concluding synopsis for interested readers.

Example Problem 1:

The first example was an idealized water-drive scenario on a 2-D horizontal domain (Figure 1).
The absolute permeability was assumed to be spatially constant, and gravitational forces were
neglected.  Specific objectives in this example problem were to benchmark: (i) conceptual model
formulations, (ii) FlexPDE solution algorithms, and (iii) forward solutions for fluid pressure and
saturations.  The results obtained with FlexPDE were found to compare favorably with results
presented by Saad and Zhang [1998], who used an alternative adaptive-grid solution technique.
Our results (Figures 2-7) indicated that the evolution of sharp fluid fronts and flows near extraction
wells (with robust outflow boundary conditions) are resolved very well relative to most other
numerical solution techniques.  These are significant factors for determining the times, paths, and
rates of fluids arriving at production wells, as well as the distribution of oil remaining in the
formation over time.
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Example Problem 2:

The second example was an idealized vertical 2-D cross-section of an oil-dome.  It loosely
incorporates Pampano-like field data as depicted in Figure 8.  Rock hetereogeneity was modeled
with two absolute permeabilities;  KC represented channel sands, and KI represented interchannel
permeability.  The contrast ratio at heterogeneous formation interfaces is given by R = KI/KC.  An
extraction well with an assumed down-hole pressure value (maintained by pumping) was located
near the dome crown.  The governing PDEs included gravitational effects (Appendix D).  Pressure
assignments at bounding aquifer interfaces were assumed to be time-invariant; and dome
boundaries were assumed to be impermeable, except at the supporting aquifer interfaces.  

A primary objective in this example was to benchmark inverse solutions for permeability.  Test
cases were solved for absolute permeability distributions from discretely ‘measured’ pressure
datum points.  The ‘measured’ datum points were, in fact, abstracted from ground-truth forward
model solutions at designated wellbore co-ordinates.  The density of datum points used to estimate
permeability spanned a broad spectrum, ranging from extremely dense sampling (>200,000 datum
points) to extremely sparse sampling (one datum point).  Key issues in these cases were:  “What is
the best image quality that might be expected from F-I permeability interpolations between wellbore
measurements for data sampling densities that range from very sparse to very dense?”;  “How to
extract the greatest amount of information from sparse data sets for reservoir systems, noting that
such systems do not generally satisfy linearity and other assumptions that are needed for
conventional Fourier-analysis-based signal-processing techniques?”;  “How to implement spatial
filtering techniques in physical configuration space, as an alternative to Fourier-transform
techniques?”;  and “How to suppress noise in both forward and inverse model simulations?”
These issues are critical to successful advances toward project end-objectives.  The results obtained
to-date are encouraging.

Forward Model Verifications (Cases 1 and 2):

To address the issues above (and others), we first verified that highly accurate forward solutions
were attainable for pressure and saturation in the oil-dome example.  A first test case assumed that
heterogeneous formation interfaces had contrast ratio, R = 1/10; and the second case assumed that
R = 0.  Results in Cases 1 and 2 (Figures 9-16) confirmed that FlexPDE algorithms resolve the
propagation of disparate fluid pressure and saturation fronts extremely well for even the sharpest
interfaces (R = 0) in heterogeneous formations.  FlexPDE solutions clearly tracked the complex
evolution of saturation fronts, which could split, refract, and undergo retardation as they propagated
through the reservoir.  Depending on values of R, the relative roles of individual physical processes,
e.g., entrapment, refraction, and retardation were problem-specific and could affect the transient
evolution of recovered and remaining oil over time.  

Inverse Model Verifications (Cases 3-5):   

The remaining cases in this section solved inverse problems for permeability distributions from
data sets with varying degrees of sparsity.  Because the resolution of permeability images is
generally an unknown function of data density, we tested the importance of spatial filtering in F-I
solutions versus sampling density.  Densely sampled data sets were benchmarked in Case 3, and
sparsely sampled data sets were considered in Cases 4 and 5.  
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Densely Sampled Data (Case 3):

Case 3 tested the capacity of the inverse solution method, alone, to calculate a known
heterogeneous permeability distribution from densely sampled data.  The working principle is: If an
inverse method is unable to produce a high-fidelity image when given sufficient data, there is little
reason to expect the method to yield credible results for real situations with sparse data.  Results
in Case 3 (Figures 17-19) yielded high-quality images of permeability relative to ground-truth when
sufficiently dense data was given (thousands to hundreds of thousands of datum points, depending
on problem specifics).  These results demonstrated that considerable resolving power is attainable
with the F-I techniques and the FlexPDE solution algorithms.  They further provided a useful basis
for benchmarking the effects of data sparsity, which is always a central issue in practical reservoir
applications.  Finally, they supported the fundamental fact that images from a finite number of
datum points cannot be truly perfect (unique) - - no matter how densely they’re spaced - - owing to
the absence of information between datum points.  Spatial filtering was generally beneficial to
image quality in densely sampled cases, but not to the dramatic extent that is observed with sparse
data sets.  Problem-specific factors that affected the impact of spatial filtering in F-I solutions
include:  data density/sparsity, permeability contrast ratios at interfaces, information propagation
modes, and robustness of the numerical algorithms.

Sparsely Sampled Data – With Spatial Filtering (Case 4):

Case 4 solved for permeability from sparsely sampled data sets, which contained 1, 20, 75, and
300 pressure datum points, respectively. The full F-I method was applied, in which spatial filtering
PDEs were solved simultaneously with the forward and inverse flow equations.  The solutions were
stable and the images were plausible relative to ground-truth, commensurate with the amount of
available data, in all cases.  The results obtained in these cases were generally representative of
numerous additional runs that were executed with varying numbers of ‘measured’ datum points.  In
many cases with relatively sparse data (5 – 20 datum points) image resolution sometimes exceeded
our initial expectations from elementary data-sampling/signal-processing principles.  Image
resolution improved progressively as the number of datum points increased, as expected.

Sparsely Sampled Data – No Spatial Filtering  (Case 5):

Case 5 tested the potential benefit of spatial filtering by deleting it altogether.  The results were
immediate and compelling.  Permeability solutions were unstable and fraught with artifacts when
pressure data was too sparse -- as is true in many inverse techniques.  Specifically, unfiltered
solutions in the oil-dome example were unstable when fewer than 75 ‘measured’ pressure datum
points were used.  This was a dramatic departure from the stable images that were consistently
obtained with spatial filtering applied.

Concluding Remarks:

It is apparent in these Phase I results that the combined signal-processing and physics-based F-
I techniques, solved with rigorous mathematical and numerical methods, enhance the resolution of
images of permeability away from wellbores.  In some instances, where many other existing
techniques would be unstable, the F-I method was stable and produced surprisingly good images
from sparse data.  Insights gained in Phase I suggest that additional advances may materialize as
these incipient principles and solution techniques are developed more fully over time.  For example,
results and descriptions in Section IV indicate that the evolution of sharp fluid fronts, which may
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split, refract, and undergo retardation as they propagate through the reservoir, are resolved
accurately in forward BOM solutions with these modeling techniques. Data sets observed at
specified times (or snapshots) during transient wellfield operations may serve as additional
constraints for enhancing permeability images.  The results further suggest that oil recovery is a
function of low- and high-permeability contrasts, of physical scale and shape of rock heterogeneity,
and of disparate-scale flow and saturation gradient evolution.  A capacity to better resolve these
sensitive features with multiple data snapshots and enhanced images of reservoir processes away
from wellbores potentially opens promising new paths toward attainment of far-market objectives.

V. Recommendations

From a critical evaluation of Phase I results we believe that continuation of this project to a
Phase II effort is warranted and would recommend it to those who understand the risk-versus-
potential return factors in far-market endeavors.  A primary objective in Phase II would be to further
expand the concepts and methods proven in Phase I to more realistic 2-D porous media physics.
This would include: (i) representative capillary pressure curves and other relevant reservoir data, (ii)
investigating the effects of undersampling in reservoir contexts, and (iii) incorporating time-
dependent production data with other transient data.  We believe that it is important at this stage of
development to rule out possible show-stoppers in three essential areas before expending the much
greater levels of effort that would be required with 3-D codes and additional technical scope in a
final Phase III:  First, the extension of capillary physics extends the range and possible severity of
nonlinear coupling and uncertainty effects that need to be assessed.  Second, the nature and
significance of image distortion between boreholes must be assessed for a sizeable range of small
and large data sets.  These results would provide an early view of the value of individual pressure
measurements and the significance of their number and locations relative to production and/or
injection wells.  Third, the inversion techniques applied for steady-state ground water problems
(Appendix B) will extend, theoretically, to inversions of data gathered at multiple times during well-
field operations.  This is a key concept for economically enhancing image resolution from sparse
data, which needs to be confirmed in 2-D, with oil-water physics.  Each of these are formidable
tasks that we believe can, and must, be resolved in Phase II, on the path toward the final far-market
goals.
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Appendix A: Theory

Although physical systems may sometimes behave deterministically, they are
nonetheless stochastic in their basic nature because fundamental uncertainties exist at all
scales of measurement.  Consequently, both dynamics and statistics must be considered in
any modeling effort that seeks to gain a fuller understanding of the information contained in
measured data and then use it to produce more reliable predictions of subsurface properties
and flow behavior.  The theoretical basis of stochastic modeling approaches is found in
kinetic theory, where the dynamical and statistical axioms of physics are used to generate
continuum flow models of mass, momentum, and energy balance.  Two theoretically
equivalent approaches are found.  One derives from the work of Langevin [1908] and is the
basis of many of the random field models that are used extensively in subsurface flow
problems today.  Random field techniques focus attention on evaluations of fluctuations of
both dynamic variables and constitutive property distributions about their respective means.
At their lowest statistical order, fluctuations are characterized by (second-order) co-variances
and cross-covariances.  They are evaluated by numerous techniques that include: inference
of prior information, stipulated properties, estimators from functional analysis, perturbation
analyses, fluctuation PDEs, maximum likelihood, etc. (See for example, McGlaughlin and
Townley [1996];  Gelhar [1993];  Dagan [1989];  Harter, Gutjahr, and Yeh [1996];  Hsu,
Zhang, and Neuman [1996];  among many others.)  The other, less-used, approach is based
on a hierarchy of partial differential equations (PDEs) for statistically averaged moments of
constitutive properties and flow variables [Gelinas, Doss, Ziagos and Nelson, 1998, Neuman
and Orr, 1993, and Dagan, 1989].  Moment PDE heirarchies can be derived using either
Langevin techniques or axiomatic techniques of classical and/or quantum physics, as
discussed further below.  When attempting to determine formation properties from
measured data, both random field and moment PDE approaches seek to replace an ill-posed
inverse problem by a well-posed one.  Distinctly different formulations and solution
techniques are used to represent and solve the defining equations in the respective
approaches.  In addition to subsurface flow problems, the random field and moment PDE
hierarchy approaches have been applied for several decades in numerous other technical
disciplines, for both classical and quantum systems.  (See, for example, Osborn [1963];
Gelinas and Osborn [1966], [1967]; Osborn et al [1967], [1968], Akcasu and Osborn
[1966], Lax [1966], Gelinas [1976], among many others.)  Advances in numerical PDE
solution techniques and software tools have recently helped to resolve some of the long-
standing issues that previously hampered application of the moment PDE approach in
ground water problems [Gelinas et al, 1998].  With the reasonable prospect of extending the
new ground water techniques successfully to reservoir problems, the moment PDE
approach was applied in this Phase I DeepLook project.  A more specific description of
Langevin and moment PDE approaches is sketched immediately below in the context of
reservoir problems.

Langevin techniques for random fields

With the possible exception of manual history-matching, variants of basic Langevin (or
random field) techniques are perhaps the most widely used approach in subsurface flow
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problems today.  Stochastic flow and constitutive property variables are represented by a
mean plus a random fluctuation function (or “equivalent noise source” function) in
Langevin approaches.  As a simple example, consider a two-phase system of oil and water
in isotropic media where sources, sinks, capillary pressure, and gravity effects are neglected.
From Darcy’s law, the total fluid velocity, V(x), is expressed in a stochastic version of the
Buckley – Leverett  formulation (Appendix E) as  

V(x) = −M(x) •[K(x)• ∇P(x)]. (A-1)

The total fluid mobility, M(x), is taken to be a known function for present purposes.
The absolute permeability, K(x), is a function of rock properties, which are not varying in
time; and P(x) is the fluid pressure.  The velocity is steady-state because changes in
pressure equilibrate very rapidly relative to changes in fluid saturations.  To develop a
Langevin model based on Eq. (A-1), the fluid velocity and pressure are represented as

V(x) =  < V(x) > +  V' (x), < V'(x) >  = 0, (A − 2)

P(x) =  < P(x) > +  P'(x), < P'(x) >  = 0, (A − 3)

where V' (x)  and P'(x)  are random fluctuation functions and angle brackets denote
statistical averages.  Similarly, absolute permeability is represented as the random variable,

K(x) =  < K(x) >+  K'(x), < K'(x) >  = 0. (A − 4)

Random field methods focus largely on the evaluation of the fluctuation
functionsV' (x) , P'(x) , and K'(x) , as well as their second moments, making extensive use
of geostatistical stipulations, perturbation techniques, and functional analysis (‘estimator’)
techniques.  When the random variables V(x), P(x), and K(x) take specialized normal or
log-normal forms, they are completely defined by their means and variances, from which
uncertainties and prediction errors are readily estimated.  These specialized forms of
distribution functions may not, however, accurately represent physical conditions in an
actual reservoir system.  In such instances, results regarding not only the physical state but
also estimated uncertainties in parameter realizations could be misleading.  Nonetheless,
such statistically-based parameter estimation techniques generally invoke certain
specializations  (e.g., Gaussian or multi-Gaussian distributions, spatially constant means,
homogeneity, small log-transmissivity variances, etc.) in order to make the calculation of
parameter realizations tractable [Zimmerman et al, 1998]. Formation property realizations
are usually conditioned by more or less systematic comparisons between measured
pressures, permeability, and forward model calculations of pressure.  But, owing to its ill-
posedness, an inverse flow PDE for permeability (or transmissivity) is usually not explicitly
solved and/or calibrated properly to permeability measurements.  The odds are then
overwhelming that estimated realizations of K(x) will fail to satisfy continuity constraints of



DeepLook Phase I Final Report UCRL-ID-126377 February 1999

A-3

the flow equation in the sense of the inverse solution, for reasons that will become more
apparent in later sections.  Excellent summaries, reviews and their cited references of many
of the existing approaches can be found in works by McLaughlin and Townley [1996],
Zimmerman, et al [1998] , Dagan [1989], and Gelhar [1993].

Moment PDE techniques

An alternative stochastic approach is developed in terms of a statistical hierarchy of
evolution equations (PDEs) for averages of moments, e.g., mean, mean-square, and possibly
higher moments and cross-moments of flow and constitutive property variables.  The
averaged moments are in fact physical observables that describe both the dynamical
evolution and the statistical properties of physical systems3.  Statistical moments in ground
water and reservoir problems are usually truncated at second-order; and the resulting system
of moment PDEs is to be directly solved and calibrated with measured data.  But, first,
several long-standing problems that have prevented successful solution and calibration of F-
I moment equations at the lowest statistical order require resolution if further progress is to
be accomplished.   

Direct solutions of inverse flow equations for mean aquifer transmissivity have been
investigated over a span of at least forty years with various method-of-characteristics, fixed-
grid finite difference and finite element techniques.  (See, for example, articles by R. W.
Nelson [1961, 1962], Emsellen and de Marsily [1971], Frind and Pinder [1973], and Dagan
[1989].)  Well-known problems associated with non-uniqueness, noise, and mathematical
instability were not mitigated satisfactorily in these and other similar efforts.  Several
essential tools and techniques were lacking; they include:

• highly accurate dynamic adaptive-grid PDE solution methods, to help reduce or
eliminate purely numerical sources of noise,

• simultaneous solutions of nonlinear forward and inverse PDEs, to better constrain
realizations and mitigate mathematical instability,

• effective spatial filtering techniques, to help suppress noise in both pressure
interpolations and derived pressure gradients,

• calibration techniques that respect basic sampling principles for sparse data and
non-uniqueness,

• dynamic adaptive-grid finite element solutions of F-I flow equations, to interpolate
transmissivity and pressure distributions, while also respecting measured datum
points, and

• calibration techniques that respect Cauchy problem requirements in the inverse
equation [John, 1982; Courant and Hilbert, 1953;  Hadamard, 1952].  

                                                
3 Although not the main point of this discussion, the calibration of modeled physical observables to
measurements generally requires fewer datum points than corresponding calibrations of modeled probability
distribution functions to measurements.  We have therefore not considered pdf approaches in this work.
Interested readers may, however, wish to peruse the interesting work of Carle and Fogg [1996a,b], which
describes a pdf transition probability technique for estimating properties of porous media.
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Recent advances in these six problem areas have apparently mitigated many of the classic
barriers for solving ground water inverse problems with direct solutions of F-I moment
PDEs [Gelinas et al,1998].

To develop the first-order moment equation for the oil-water example considered above,
Equations (A-2) - (A-4) are substituted into Equation (A-1).  Statistical averaging of the
resulting equation gives

< V(x) >  = −M(x) • [< K(x) >•∇ < P(x) > +< K'(x)∇P'(x) >]. (A − 5)

Without loss of generality, M is taken to be identity for present purposes.  For steady-state
incompressible flow, the lowest-order PDE for flow in porous media with no sources or
sinks is:  

∇• < V(x) >  = 0, (A − 6)

which can be written, using (A-5), as:

∇• [< K(x) > •∇ < P(x) >] + ∇• [< K' (x) • ∇P' (x) >] = 0. (A − 7)

In a convenient operator notation for moment PDEs, the first-order flow equation (A-7) is
written as

L
1
(V

m
) = Q r . (A − 8)

The operator L
1
(V

m
) represents the left-hand-side of the first-order moment equation.

Functionally, it is the negative divergence of the mean Darcy velocity (V
m
) , namely;

L
1
(V

m
) =∇• [< K(x) >•∇ < P(x) >] = −∇ •V

m
, (A − 9a)

where

V
m

≡ − < K(x) > •∇< P(x) > . (A − 9b)

The operator Qr on the right-hand-side of equation (A-8) involves a second-order mixed
moment of absolute permeability and pressure gradient fluctuations about their respective
means, namely,

Q r = −∇• < K'(x) •∇ P'(x) >  ≡  ∇ •Vr , (A − 10a)

where the ‘residual’ velocity Vr  is defined by
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Vr ≡ − < K'(x) •∇P'(x) > . (A − 10b)

The residual velocity is a (second-order) cross-correlation term that contributes to the rate of
change of the mean flow equation.  Using equations (A-9) and (A-10), equation (A-8) can
readily be written as a conventional mean flow equation with an effective source term, Qr , as

−∇ •V
m

= Q r(Vr). (A −11)

Owing to the presence of the second-order term Vr  in the mean flow equation (A-11), a
second-moment PDE is generally needed for evaluating Qr .  Second-moment PDEs are
frequently integro-differential equations, as can be seen in the article by Neuman and Orr
[1993].  It serves our purpose here to again use operator notation, with spatial arguments
suppressed, to represent the second-order moment PDE for V r~< K' • ∇P' > as

L
2
(< K'•∇P'>) = f

2
(< K >,< P >,< K' K' >,< P' P' >), (A − 12)

where third-order moments have been truncated.  The right-hand-side of this equation (A-
12) is a complicated function (f2) of the arguments indicated.  Because Eqn. (A-12) depends
upon second-order correlations, < K' K'>  and < P' P' >  the second-order hierarchy is
completed by the PDEs for < K' K'>  and < P' P' > , namely,

L
3
(< K' K'>) = f

3
(< K >, < P >,  < K' P'> , < P' P' >), (A − 13)

L
4
(< P' P' >) = f

4
(< K >, < P >,  < K' P'> , < K' K' >). (A − 14)

To briefly summarize, the system of first- and second-moment PDEs is comprised of
Equations (A-11) - (A-14).  Several properties of the first-order flow equation are
immediately evident:

• If Qr  is negligible, the mean flow equation (A-11) can be directly solved and
calibrated to measured data if wellfield source terms and boundary conditions are known or
stipulated to be statistically independent.  In this instance, statistical properties can be
evaluated separately from the mean flow PDE.

• If the cross-correlation term (Vr )in Qr  is Fickian (i.e., proportional to a mean
coefficient times ∇  <P>), solution of the moment PDE hierarchy is again separable in the
sense that the mean flow equation (A-11) reduces to

∇• [< ˜ K ) >•∇ < P >] = 0, (A −15)

which resembles the conventional source-free mean flow PDE with permeability < K
~

> .  In
these two instances, with Q

r
 equated to either zero or a Fickian function, the higher-order
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moments may depend on the mean variables, but the mean variables do not depend on the
higher-order moments.  The mean and higher-order moments can then be calibrated to
measured data by separate techniques without loss of generality.

• If the cross-correlation term (Vr ) is believed to be known independently, e.g., from
other geostatistical analyses, the PDE hierarchy may again be solved in a separable manner,
using the F-I methods to solve and calibrate the mean flow equation (A-11), with Qr  given
from other analyses.

• Finally, when the permeability and pressure are significantly correlated,
simultaneous solution and calibration of the coupled equations and (A-11) - (A-14) are
generally required for the best results.  General solutions of the moment PDE hierarchy are
difficult to obtain in practice because the second-order moment PDEs (A-12) - (A-14) are
usually nonlinear integro-differential equations [Neuman and Orr, 1993].  It is possible, but
not yet clear, that extended adaptive-grid techniques will fare significantly better than the
specialized transform and Monte Carlo techniques used to date for the solution of integro-
differential PDEs.
Regardless of the significance of residual flux, Qr , appropriate sparse-data calibration
techniques for the forward and inverse solutions of the lowest-order flow equation (A-11)
are of overriding importance.  For it is at low-order where the classic problems of ill-
posedness and mathematical instability reside.  All stochastic inverse methods, including
widely-used manual history-matching, are dependent upon the quality of the low-order
simulations.  Hence we have emphasized in this report only the lowest-order flow equation
(A-11) for cases in which Qr  is either Fickian or negligible.
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Appendix B: Analytic Description of the F-I Method

1. Simultaneous Conditioning of Forward and Inverse Flow Models

In the interest of economy, this Appendix abstracts pertinent parts of the mathematical
development of the new F-I modeling techniques from their original documentation in an
LLNL report by Gelinas et al [1998].  The context of the original developments was for
single-phase flow in saturated porous media for ground water remediation problems.  These
techniques are being extended to F-I modeling of 2-D transient oil-water problems in this
Phase I project, where the  primary emphasis is on proofs of concepts.  Analytic
descriptions of the simultaneous F-I modeling techniques are presented here in their
original notation pertaining to ground water aquifer problems.  Additionally detailed
mathematical proofs and text will be found in journal articles when they become generally
available.

To emphasize basic concepts without significant loss of generality, steady-state ground
water flow in a confined aquifer is modeled according to Darcy’s law over regional scales.
The steady-state flow equation in three spatial dimensions (3-D) can be written as:

∇• (K∇h) + Q = 0, (B-1)

where K is the hydraulic conductivity of the aquifer, ∇h is the hydraulic head gradient, and
Q represents internal source and sink rates.  When the aquifer thickness is substantially
smaller than the horizontal scale of the flow domain, the two-dimensional (2-D) flow
equation,

∇• (T∇h) + Q = 0, (B-2)

is a reasonable approximation for many aquifers. The transmissivity T is defined as the
product of K and the aquifer thickness, b. (Unless otherwise noted, we exercise an
understood convention in subsurface flow articles of using scalar notation for tensor
quantities, e.g., K and T in this report.)  A site characterized by borehole measurements of
hydraulic head and transmissivity is depicted schematically in Figure B1.  Hydraulic head
and transmissivity are measured at discrete locations in the domain, Ω, and on its boundaries
∂Ω. The thickness of the aquifer is assumed to be known from measurements, as are
pumping sources and sink rates in equations (B-1) and (B-2). Transmissivity data are
usually more sparse than head data. Head measurements are usually much more accurate
and localized at the borehole than are transmissivity values. For convenience in this initial
work, Q is henceforth taken to be zero.
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Figure B-1: Remediation site domain  with boundary ,
characterized by discrete borehole measurements of
h and T.

The main task is to determine transmissivity distributions everywhere in a domain Ω,
based on knowledge of measured hydraulic head and transmissivity at a discrete and finite
subset of Ω (see Figure 1). The data is assumed to fairly conform with the model
assumptions of a steady-state condition of an aquifer region with no internal ground water
sources or sinks.  The case with non-zero sources/sinks is being developed in separate
work.  Because the present work focuses on the mathematical model for the lowest-order
(mean) equations of the moment hierarchy, the angle brackets for statistical averages in the
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text will henceforth be dropped for convenience.  Also, to facilitate subsequent discussions,
the following definitions are introduced here, referring to Figure B1.

S A finite set of 2-D Cartesian coordinates {(xi,yi), i = 1, 2, ...} at which measurements of
hydraulic head are collected.  This ‘fixed point set’ becomes part of the nodal assembly
in the finite element solution of the governing PDEs.

H The set of measured head values on the set S.

H ' Is constructed from H by replacing all elements of H by those obtained from the
somewhat smoothed solution hs in equation (B-9).

T A set of transmissivities inferred from other well tests at some subset of S.  These will be
referred to as transmissivity measurements.

Ω A domain in the x-y plane over which one attempts to solve for h and T and whose
boundary ∂Ω is a polygon consisting of those linear segments joining the ‘outermost’
points of the set S.

S' All points of S which are not included in ∂Ω;  S' = S - ∂Ω.

Ω' The entire domain excluding the set S;  Ω' = Ω - S.

Cn(Ω) The class of all continuously differentiable functions in Ω up to order n.

Notice that it is always possible to construct Ω so that it is the convex hull of S.
However, such smallest convex set containing the set S could be inadequate in specific
instances that are described in forthcoming journal articles.

Starting from the mean flow equation for porous media with  physical sources and sinks
of ground water (Q) equal to zero,

∇• (T∇h) = 0, (B-3)

and assuming that h(x,y) is known everywhere in Ω, then equation (B-3) can in principle be
solved for T(x,y) as the unknown dependent variable.  This is the inverse solution process
for T and is to be contrasted with the familiar usage of equation (B-3) to solve a forward
problem for h when T is given everywhere in Ω.  Frequently, equation (B-3) is referred to as
the inverse equation when the inverse solution process is being considered; its solution, T, is
then referred to as the inverse solution.  Being a first order PDE in T, equation (B-3) can be
solved by the method of characteristics provided that its coefficients satisfy some reasonable
smoothness conditions.  Although the classic characteristic approach is not employed in this
work; the latent wealth of information pertaining to the theory of first order partial
differential equations [Courant and Hilbert, 1953; John, 1982] is nonetheless employed
extensively and implicitly in the present work.

Sparsely measured head data (as well as sparse transmissivity data) present both the
major problem and the reason for transmissivity parameter estimation.  Because of the lack
of complete knowledge of h everywhere in Ω, it follows, that head gradients are not defined
in all of Ω; and thus a PDE simply does not exist from which T can be determined.  An
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immediate way to proceed, then, is to find an interpolating surface that passes through all of
the head datum points.  Because a vast number of such surfaces often exist, one finds that,
unless further constraints are imposed, the inverse solution (if found) will often yield
unphysical transmissivity distributions.  The cause of this difficulty is readily explained:
most trial interpolating surfaces that pass through the measured head datum points form
relative maxima or minima ‘spikes’ on the set S, thereby violating the maximum-principle
for elliptic differential equations.  See, for example, Protter and Weinberger [1984].  The
interpolating surfaces must therefore be selected judiciously—which is the starting point for
the developments in this work.

For readers who may need a “refresher”, it is important to review briefly the method of
characteristics for first-order quasi-linear differential equations.  In order to write equation
(B-3) in standard form, one assumes, momentarily, that the head, h, belongs to the class of
functions C2(Ω).  The theory of characteristics then leads one to solve the following set of
autonomous ordinary differential equations (ODEs):

dx

ds
=

∂h

∂x
(B-4)

dy

ds
=

∂h

∂y
(B-5)

dT

ds
= −T∆h (B-6)

where s is a parameter measured from some given ‘initial’ point (x0,y0,T0), and ∆ denotes
the Laplacian operator.  The first two ODEs (B-4) and (B-5) easily map the geometry of
characteristic curves (or more precisely, the projection of the characteristic curves on the x-y
plane) based solely on knowledge of head gradients.  The third ODE determines T uniquely
along the entire characteristic which passes through (x0,y0) and such that T=T0 at s=0.  In
fact, if the parametric solutions: x=x(s,x0,y0), y=y(s,x0,y0) obtained from equations (B-4)
and (B-5) are substituted into equation (B-6), the solution to equation (B-6) is obtained
readily in the form

T = T0 exp{- {
0

s

∫ ∆h( ) d }, (B-7)

which incidentally guarantees that T will always remain positive, as expected.  It is assumed
in equation (B-7) that the functional form of ∆h is known at least along the characteristic
curve through (x0,y0). Transmissivities would be completely determined everywhere in Ω
once T is given values along an entire non-characteristic initial curve Γ, provided that all of
the characteristic curves emanating from Γ sweep the entire domain Ω. If not, one can only
solve for T on the subdomain that is swept out by the characteristic curves.

When dealing with the reality of non-smooth h, several daunting problems and concerns
must be addressed.  The first problem, the satisfactory resolution of head Laplacians from
sparse data, is in practice intractable because the head gradients are often discontinuous on
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Ω; and the head Laplacian is therefore undefined on all of Ω.  A second concern is that only
one transmissivity value is needed on a characteristic curve in order to determine all other
transmissivity values along that curve uniquely.  If additional inconsistent values were to be
assigned somehow on the same characteristic curve, as is frequently done in stochastic
transmissivity parameterizations, zonation schemes, and history-matching techniques,
fundamental ODE solution requirements for the inverse equation are contradicted and
physical continuity is not respected in the inverse sense.

A third problem is one of managing logistics; i.e., the bookkeeping of all generated
characteristic curves emanating from some finite set of points traversing Γ for the
eventuality of constructing the integral surface containing these characteristic curves.
Thoughts concerning these problems motivated the present quest for more viable parameter
estimation techniques—techniques that can solve simultaneous forward and inverse flow
PDEs, augmented by spatial filtering PDEs for data smoothing, in a true physical
continuum according to kinetic theory.

The process developed here for heading off some of the classic difficulties mentioned
above is composed of four basic steps.  Each step can be described and verified separately
before merging them finally into a simultaneous, iterative process for sparse, noisy data in
field applications.  The basic steps are:

1. Form a trial interpolating surface hr(x,y) in Ω such that, on the discrete subset S ' of
Ω, h r is forced to take on the corresponding measured values in the set H.  The
interpolator employed here is a variant of the flow equation.

2. Introduce and solve an additional PDE for smoothing hr in Ω.  The amount of
smoothing of spikes in hr at measurement points is controlled by user-selected
parameters.  This produces spatially filtered distributions hs that can deviate from H
on the set S ' by any preset amount.

3. Introduce and solve two additional PDEs that produce smoothed head gradient
components, u and v, from hs obtained above.  It is extremely important to smooth
head gradients prior to using them as coefficients in the inverse equation.

4. Solve a regularized variant of the inverse equation (B-3) using a spatially filtered
head gradient (u,v) in lieu of ∇h.

The first step is a ‘rough’ interpolation of the hydraulic head data.  The key idea is to
bring a stronger influence of physical dynamics to bear on the interpolation than is usually
applied in geostatistical interpolation methods.  An obvious choice is to use a variant of the
mean flow PDE, itself, as the interpolator.  Letting T be a constant average value (or any
constant value), the interpolating equation is

∇•(T∇hr) = 0. (B-8)

It is important to note that equation (B-8) is to be satisfied in Ω', rather than in the entire
domain Ω.  The solution hr is ‘pinned,’ or ‘clamped’, to the set H on the remaining set S'.
In other words, hr is constrained to both respect the values of measured head and to satisfy
the flow equation everywhere else in Ω.  This is directly analogous to solving mechanical
stress problems with fixed loads at given coordinates.  Galerkin numerical solution methods
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are especially well-suited for solving these types of PDEs because they can respect the data
at fixed points and yield optimized solutions that minimize PDE residuals over the rest of
the problem domain.  On ∂Ω, Dirichlet boundary conditions are assigned to hr.  Linear
interpolation is expedient but other methods of assignment may be used when they are more
appropriate.

This first trial interpolating surface is calculated in this work by employing a dynamic
adaptive grid finite element code toolkit, FlexPDE, which enables the user to solve equation
(B-8) in Ω', subject to the pinning constraints.  (This feature was implemented in our
version of the FlexPDE toolkit by its author, R.G. Nelson, specifically for development of
the present inverse techniques.  See the texts of Backstrom (1994, 1998) for not only
specific information about using such advanced toolkits as PDEase and FlexPDE but also
new modes of posing computational models with these emerging tools in order to respect
and enforce essential mathematical requisites in complex physical problems.)

The solution hr in this step is expected to possess relative maxima or minima that may
be associated with several possible origins.  First is the sweeping approximation of
replacing T by its average value on Ω.  While this might seem to be the major cause for
such extraneous behavior, it is seldom the case.  Other possible causes include: data errors
or noise, ground water sources/sinks that were previously unknown, absence of a perfect
steady-state in nature, and local/non-Darcy effects (equivalent sources).

The second step performs an additional smoothing process on hr over Ω in order to
damp or completely diminish spurious spikes.  It is necessitated because complete clamping
of hr to H on S' can create a corresponding set of local spikes, which cannot exist anywhere
in Ω, in the absence of physical sources or sinks.  (When such spikes actually turn out to be
previously unknown physical sources or sinks, the presently described techniques turn out
to be useful ‘source-finders,’ which is another subject that will be considered as part of
‘data-mining’ in future work.)  Looking ahead to the next (third) step, much of the
important information content from hydraulic head measurements, no matter how sparse or
devoid of high spatial frequency information they may be, resides in the gradients and
Laplacians of the head, as was indicated in previous discussion.  The objective in the second
and third steps is to extract as much information as possible by performing spatial filtering
that is commensurate with the spatial intervals between the measured data [Bracewell, 1986].
Such filtering is also required to produce a smoothed hs that effectively satisfies the
maximum principle for elliptic differential equations.  The clamping imposed on hr is
therefore relaxed at the measurement points by solving the following PDE for hs on Ω:

∆hs  +   (h r - h s ) =  0       in      Ω. (B-9)

The Laplacian operation in the first term of equation (B-9) is recognized to be a
bandpass filter function [McGillem and Cooper, 1984].  It does not have a sharp cut-off at
any spatial frequency; so some latitude can be exercised in Laplacian smoothing with this
factor in mind.  The second term in equation (B-9) can be viewed as a penalty function that
controls the amount of smoothing of hr through proper choices of the parameter α.  Clearly,
very large α yields an hs that hardly differs from hr; that is, very little smoothing is done.
And vice versa, as α approaches zero, hs approaches a harmonic solution in Ω.  But too
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much smoothing is obviously undesirable when it loses (by aliasing) significant amounts of
information about the set H on S '.  Criteria for the extent of smoothing in this step are
discussed in technical journal submissions.  (Recall that the average transmissivity assumed
in the first step is not the final distribution that is sought.)  The solution hs is then used to
construct a new set H ' of smoothed heads on S ', and H ' replaces H in subsequent steps.

The rationale for step three is built on the fact that the gradient of hs, and not hs per se, is
the critical determinant in solving for T in step four.  Because small deviations of hs from a
correspondingly true head produce large deviations in calculated head gradient, this
smoothing step is mandatory.  The principle applied in the third step is similar to that in step
two.  Defining (u,v) to be the desired smoothed head gradients, relative to less-smooth
gradients (∂hs/∂x,∂hs/∂y), the following two PDEs are introduced and solved for on Ω:

∆ u +  (
∂h s

∂x
− u) =  0      in      Ω, (B-10)

∆ v +   (
∂h s

∂y
− v) =  0      in      Ω. (B-11)

The options used for assigning boundary conditions (BCs) for u and v on ∂Ω are
straightforward and are specifically discussed in journal submissions.

The fourth step attempts to determine T based on knowledge of spatially filtered head
gradient (u,v) obtained in step three.  As part of a procedure that deals mainly with solutions
of boundary value problems (BVPs) in steps 1-3, it is both desirable and advantageous to
recast the inverse equation so that a BVP can be prescribed here as well.  This is
accomplished by solving a regularized version of equation (B-3) through the addition of the
regularizing term ε∆T, for sufficiently small ε,

∇• (Tu, Tv)+ ∆T =  0      in      Ω. (B-12)

This modified equation (B-12) is in principle an elliptic equation.  But in practice it is
essentially a hyperbolic PDE.  The solution to equation (B-12) can then be completely
determined, provided that T is given along some non-characteristic curve Γ in the closure of
Ω and such that the continuum of characteristics emanating from Γ span the entire domain
Ω. For brevity, a Γ curve that satisfies these conditions will be referred to as an admissible Γ
curve.  If no admissible Γ curve exists for the entire domain Ω, then one must partition Ω
into two or more subdomains, each of which possesses its own admissible Γ curve.
Fortunately, in the absence of sources and sinks in ground water flow problems, the
geometry of characteristic curves is usually simple enough (but not trivial!) that it only
requires the specification of a single admissible Γ curve.  No further specification of T
along the remainder of ∂Ω is required.  Such a ‘no specification’ boundary condition is
exacted by recycling integrands in all boundary integrals that are produced from integration
by parts in the numerical solution process [Oden et al, 1986].  That is, whatever expression
appears in a boundary integral, it is reused, as is, in forming the mass matrix of the Galerkin
equations.
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It appears, so far, that knowledge about the projection of the characteristic curves (or
simply characteristics) on the x-y plane for equation (B-12) with ε = 0, enters in this
analysis for the end-purpose of determining admissible curves Γ.  Such a purpose could
just as well be accomplished quickly by graphically investigating the normalized spatially
filtered head gradient (u/s, v/s), s = (u 2 + v2) 1/2 (i.e., a vector field plot).  Knowledge about
the characteristics, and more importantly how stably and efficiently they are determined,
actually serve a broader goal in this work. Consider, then, the solution ψ of the following
first order PDE:

u
∂
∂x

+ v
∂
∂y

= 0      in Ω (B-13)

and suppose Γ is an admissible curve in Ω, which could be a part of ∂Ω.  For simplicity, let
ψ take on any monotonically increasing set of values along Γ, say for instance ψ = s, s
being some parameterization of Γ such that 0 ≤ s ≤ 1 (see Figure B2).  One can conclude
from the theory of characteristics that the continuum of curves {ψ = C, 0 ≤ C ≤ 1} is
precisely the set of all characteristic curves for equation (B-13).  That is, if one can solve
equation (B-13) ‘directly’ in Ω in lieu of actually solving the standard ODEs for the
characteristic curves, namely,

dx

ds
= u, 

dy

ds
= v, (B-14)

the entire geometry of characteristics is then obtained, all at once, from the knowledge of ψ.
Such direct solution of equation (B-13) can be accomplished by regularization with the term
ε∆ψ, paralleling the previous discussion.  The essential BC required here is that which is
given along Γ, namely ψ = s; and ‘no specification’ BC is required along the remainder of
∂Ω.  The function ψ should not be confused with the classical stream function, which is
usually defined as a solution of the Cauchy-Reimann equations and is obtained as the
solution of a harmonic equation with proper choices of BC on ∂Ω.  Classical stream line
solutions obtained in this way are identical to ψ only for constant T.
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Figure B-2: Schematic representation of an admissible  curve
in a domain .  Transmissivity values measured at
(x0', y0') can be projected to the  curve by procedures
developed in journal article submissions.

Returning to equation (B-12), it is of interest to note its relationship to equation (B-13).
For simplicity assume that both u and v are differentiable. Equation (B-12) can then be
written for ε = 0 as,

u
∂T

∂x
+ v

∂T

∂y
+ T (

∂u

∂x
+

∂v

∂y
) = 0. (B-15)

 In the absence of the last term (which is essentially T∆h), equation (B-15) is identical to
equation (B-13) with ψ replaced by T.  The point to be made here is that the behavior of the
solution process in (B-13) is expected to reflect on how the solution process to (B-15) will
develop.  In fact, it was found that it is often convenient to represent T in (B-12) as the
product of two functions,

T =  Φ• Tg, (B-16)
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where Tg is a general or generic solution to equation (B-12) with Tg = 1 on Γ; and Φ is a
particular solution to equation (B-13) with Φ = Tγ along Γ.  It is clear from this specification
that T = Tγ on Γ.  That the factorized form of T in equation (B-16) formally satisfies (B-12)
is also straightforward to deduce.  One can further notice that (u,v) only needs to be
continuous along Γ in order for the representation (B-16) to make sense.  Also notice that, if
Γ is either a portion of the domain boundary ∂Ω or if it is an isocontour h(x,y) = constant,
then no assumptions about the smoothness of (u,v) along Γ are required.  The additional
rationale for the T factorization will be addressed shortly.

The foregoing analysis of the four main steps was presented as sequential steps so that
each succeeding step builds on the results of the preceding one, but not vice-versa.  The core
algorithm presented in this work, however, consists of merging, with slight modification, the
equations studied in these steps into a full-fledged system of coupled nonlinear equations.
The purpose of the sequential presentation was to: (i) better understand the motivations and
rationale leading to the creation and execution of each step; (ii) derive a new set of head
values H ' that are more compatible with prospective transmissivity distributions than H; and
(iii) obtain a reasonably good starting set of trial values for the quartic {h, u, v, T}.

The system of equations employed for the final determination of T is derived with few
minor modifications from the four steps discussed previously.  The system solved in this
final stage consists of four PDEs in four unknowns {h, u, v, T} expressed as:

∇• T ∇h = 0, (B-17a)

∆u + (
∂h

∂x
− u ) = 0, (B-17b)

∆v + (
∂h

∂y
− v ) = 0, (B-17c)

∇• (Tu,Tv) + ∆T = 0. (B-17d)

The main distinction between equations (B-17) and the previous individual steps is that
equation (B-8) with constant average T in step 1 is replaced by equation (B-17a), with both
T and h unknown.  A similar distinction holds between equation (B-17d) and equation (B-
12).  Whereas equation (B-17d) treats T, u, and v as unknowns, equation (B-12) was solved
only for T with u and v assumed known.  Notice that no further smoothing of h, itself, is
performed here.  The smoothing of head gradients is however, retained.  Discussions related
to boundary conditions in the previous steps carry over to this system of coupled equations,
with one exception.  Namely, the set H in step one is replaced by the set H ' here.  Taken as
a whole, the system of PDEs (B-17) is obviously nonlinear in the unknown variables {h, u,
v, T}.  As such, it is important to start with good initial trial estimates according to the
procedures developed in this work for starting the Newton-Raphson linearization process
employed in the numerical PDE solver.
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As discussed previously for equation (B-16), one can factorize T as T =Φ•Tg and solve
the system (B-17) with Tg in place of T, obtaining solutions for u, v, and Tg. One can then
obtain Φ by solving separately, the following regularized PDE:

u
∂Φ
∂x

+ v
∂Φ
∂y

+ ∆Φ = 0. (B-18)

The system (B-17) with T replaced by Tg is devoid of any particular assignment of
transmissivity data along Γ.  (Recall that Tg = 1 along Γ under this factorization.)  The
system (B-17) therefore needs to be solved only once; and many different possible
realizations of T along Γ can then be tested quickly by solving the simpler, single equation
(B-18).  The facility of Tg = 1 on Γ implies that a reasonable initial guess for the Newton-
Raphson linearization could be taken as Tg = 1 everywhere in Ω.  On the other hand, an
assignment of highly varying T along Γ when solving the original unfactorized T can lead to
instabilities and outright divergence of the numerical solution process.

Undersampling Effects

The primary challenge of inverse modeling is to deal with the daunting problems
associated with determining transmissivity realizations (images) between boreholes from
sparsely sampled data, so that the realizations obtained will agree as closely as possible with
the actual spatial distribution that exists in nature.  The realizations sought must respect all
applicable principles of mathematics, physics, and signal processing.  For testing ground-
truth notice that, if an inverse solution algorithm is somehow given a set of practically
perfect (very highly-resolved) discrete data for transmissivity and head from a well-posed
problem, the algorithm has no way of knowing that the problem was abstracted from one
with a unique solution.  So a first test of any inverse method/algorithm is that it should
produce a close semblance of the unique transmissivity distribution when such a data set is
provided.  That is the type of test used here to establish a connection with ground-truth.
Once that is established, the effects of sparse data sampling can be examined gainfully.

Highly accurate adaptive-grid PDE tools enable one to construct ground-truth data sets
for well-posed problems that do not have analytic solutions.  The following such problem is
constructed here with discontinuous transmissivity: A domain Ω consisting of the square (-
4 ≤ x ≤ 4) by (-4 ≤ y ≤4) is selected.  As shown in Figure B-3, Ω is partitioned into 64
equal blocks, or zones, of unit squares; and T is assigned a constant value on each of these
64 zones.  Notice that the constant zonal values of T alternate several times between
increasing and decreasing, geometrically, giving rise to a haphazard staircase-like shape with
a range of T between 1 and about 75.  Given this distribution for transmissivity in Ω, the
following boundary value problem (BVP) for h is solved numerically: ∇•(T∇h) = 0 in Ω,
along with the BCs h = 100 on the side x = -4; h = 10 on the opposite side, x = 4, and zero
flux condition along the remaining sides y = ±4.  The solution to this BVP was obtained to
a very high accuracy, using the PDEase toolkit.  The solution obtained for the pair (T, h) is
shown in Figure B-4 as head isocontours.  To verify ground-truth of the inverse solution, a
very dense set of discretely sampled datum points was then abstracted from the head
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isocontours in Figure B-4, along with a dense set of discretely sampled transmissivity
datum points only on the Cauchy line, taken to be along the vertical line at x = -4.  Provided
with these sets of dense datum points, the F-I algorithms described previously in this
Appendix calculated a transmissivity solution that was indistinguishable from the original
distribution shown in Figure B-3.  With ground-truth established, the effects of data
undersampling are examined next.

Figure B-3: Plot of synthetic transmissivity used to generate
the ground-truth head solution.
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Figure B-4: Isocontour plot of the ground-truth solution
h(x,y).  The contours a, b..., q correspond to h = 15,
20, ..., 95 respectively.

 Sixty-four ‘measured’ h data are given only at the center co-ordinates of each of the 64
blocks shown in Figure B-4, and T is given along the side x = -4; (-4 ≤ y ≤ 4).  Exact
transmissivity values were assigned along Γ in the calculation of the particular solution Φ
equation (B-17).  Using the factorized methods described previously, the discontinuous
transmissivity features of the ‘true’ solution (Figure B-3) are resolved as shown in Figure
B-5 for Tg and in Figure B-6 for Tcalc.  As expected, sharp discontinuities in the true T
distribution of Figure B-3 are smoothed by the undersampling.  The general features of the
transmissivity distribution have however been reproduced with surprisingly good fidelity
from the information contained in such few observation points, in our opinion.  The
Maximum Relative Error Norm (MREN) < 245%, and the Absolute Relative Error (ARE) <
19%. Maximum errors, as seen in Figure B-7, occur at the T discontinuities, as anticipated.
It is here that adaptive grid PDE solvers apparently demonstrate their worth for calculating
gradients with the maximum fidelity that is compatible with supporting measured data.
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Figure B-5: Isocontour of Tg  for Tg = 1 along .

Figure B-6: Tcalc surface plot.  This estimated transmissivity has the
overall shape of the ‘true’ solution shown in Figure B-3.
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Figure B-7: Plot of MREN for the undersampled h and T.  Maximum  error occurs along
horizontal lines between large changes in T and does not exceed 245%. The ARE
is <19%.



DeepLook Phase I Final Report UCRL-ID-126377 February 1999

C-1

Appendix C: A Technical Description of FlexPDE Toolkit

FlexPDE is a software tool for the solution of systems of partial differential equations.  It offers
an integrated problem solving  environment, including a problem description language, a finite element
numerical modeling facility, and graphical output of solutions.  The interactive run-modify-run
environment provides convenient, effective development and debugging of models.  

Equation Systems
FlexPDE can treat boundary value and eigenvalue problems in two or three space dimensions, as

well as initial/boundary value problems in two or three space dimensions plus time.  Systems may
contain equations of different types; e.g., elliptic, parabolic, hyperbolic, algebraic, etc.  (Users must be
cognizant of appropriate initial values, boundary values, and other mathematical requisites.)  The
equations are assumed to be of first or second order in space, and first order in time.  Equations of
higher order must be rewritten as systems of equations of lower order.  Equations may be linear or
nonlinear, and FlexPDE will automatically apply a solution method which is appropriate to the system.
The number of simultaneous equations is limited only by the resources of the computer.

Boundary Conditions
Boundary conditions may be specified as arbitrary combinations of "value" and "natural"

conditions.

"Value" boundary conditions specify the value of a given dependent variable as a function of
constants, spatial coordinates, and values or derivatives of dependent variables.  "Natural" boundary
conditions depend for their meaning on the way the equations are written, but in the usual case refer to
the specification of a boundary flux.  Natural boundary conditions are given as functions of constants,
spatial coordinates, and values or derivatives of dependent variables.  Consider for example the heat
equation div(-K*grad(T))=H.  Application of the divergence theorem to the left side reduces it to the
surface integral of (-K*grad(T)), which is the meaning of the natural boundary condition, ie. the
surface flux.

Problem Domains

Problem domains can be arbitrarily complex in two space dimensions, but contiguity is assumed.
Two-dimensional domains may be made up of an arbitrary number of regions, with differing
parameter definitions in all or any region.  Three dimensional domains are constructed as layered
extrusions of two-dimensional domains, and so are more restricted.  Any number of layers may be
specified, and material parameters may be different in any layer of any region.  Layer interfaces may
be non-planar, specified by arbitrary functions of 2D spatial coordinates, but must not intersect.

Problem Descriptors

FlexPDE uses a sophisticated grammar-based input format, which allows problem descriptions to
be written in a compact and readable form, following very closely the mathematical description of the
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equations and parameters.  The problem domain is specified by walking the region boundaries,
attaching boundary conditions as appropriate.

Symbolic Equation Processing

Equations and definitions presented in the problem descriptor are subjected to various
symbolic operations internal to FlexPDE.  This includes expansion of vector differential operators (div
and curl), simplification of arithmetic, and formation of Galerkin integrals and Jacobian matrices.  All
these derived equations are held internally as computation trees, and are evaluated as needed during the
progress of the solution.  In this portion of its processing, FlexPDE is similar to a symbolic algebraic
processor or a language compiler.

Finite Element Model
FlexPDE forms a Galerkin finite element model of the equation system, using quadratic or cubic

basis functions involving nodal values of system variables only4.  This model assumes that the
dependent variables are continuous over the problem domain, but does not require or impose
continuity of derivatives of the dependent variables.  Second-order terms in the equations will give rise
to various forms of flux continuity (through surface integrals generated by integration by parts), and
these conditions will be imposed in an integral sense over the cell faces.  

Numerical Solutions

During the symbolic processing of the equation system, FlexPDE detects whether the problem is
time dependent or steady-state, linear or nonlinear, symmetric or nonsymmetric.  Appropriate solution
algorithms are then applied to effect an efficient solution.  Symmetric steady-state systems attempt to
apply an incomplete Choleski conjugate gradient iteration method (ICCG); if this fails, or if the
system is time-dependent, a preconditioned conjugate gradient technique is applied.  Nonsymmetric
systems use a Lanczos (bi-conjugate gradient) iteration method.  Nonlinear systems use a Newton-
Raphson iteration with backtracking, while linear systems perform an iteration on residuals.

Adaptive Meshes

FlexPDE automatically generates an unstructured computational mesh of triangles or tetrahedra
which fill the domain and match region boundaries.  If the solution generated on the initial mesh fails
                                                
4 There are ramifications to this model which require care on the part of the user. In electromagnetics,
for example, the normal component of D is continuous across material interfaces, while the tangential
component of E is continuous. It is not possible in general to satisfy both of these conditions if the
field components themselves are chosen as the system variables. There are two ways to address this
difficulty. First is to pose the problem in terms of potentials and not field components. The potential
equation div(eps*grad(V))=rho accurately represents all the physical requirements of the system. The
cell-face integral of the normal component of D will be continuous across material interfaces (this
follows from application of the divergence theorem to the PDE), and the tangential component of E
will be everywhere continuous on the interface (since V is single-valued on the interface). If the user is
still determined to model field components instead of potentials, then he must restrict himself to
problems in which the continuity requirements can be met, ie., in which some of the field components
are missing.
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to meet the user-specified error tolerance in every cell, then the mesh is adaptively refined and a new
solution is found, until the requested accuracy criterion is met.  In time dependent problems, meshes
will be refined where necessary, and un-refined where no longer required, so that mesh density will
follow moving fronts.

Graphical Output
Graphical output can be requested for any function of independent and dependent variables and

constants.  Available graphic formats include contour plots, surface plots, elevations (line-outs), vector
fields, and deformed meshes.  Arbitrary function values, including area and surface integrals, can be
reported on any plot, and a summary page can be written with reports of arbitrary function values.

Availability

FlexPDE is a product of PDE Solutions Inc.  More information can be found on Internet at
www.pdesolutions.com.
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Appendix  D:  Listing of Problem Setup Commands

 FlexPDE Descriptor File for the forward Dome Model Problem (Figures 8-14 of text)

{DMHSS1  -->  Heterogeneous Sand (K=5.e-13)/Silt (K=5.e-14) Dome Problem. }

TITLE 'OW Water-Drive Heterogeneous sand/silt'

SELECT
     
        errlim = 2.e-3                     ! Maximum error bound     
        nodelimit = 8000
        upwind = off                      ! Do not use FlexPDE upwinding                  
        firstparts                            ! Force integration by parts of first order terms
        nrupdate = 4                      ! Maximum number of Newton-Raphson Updates
        tcenter = 1                         ! Use the fully implicit BCE method

VARIABLES
             s, p                                ! Main system variables: Saturation s and Pressure p.

COORDINATES
       cartesian ('x','z')                  ! Default coordinate system is (x,y)

DEFINITIONS
    
       p0 =    table('dmhom1p.p01')         { Read  table of  pressure variable for zero
saturation   
                                                                 everywhere.  Could use instead p0 = 1}
       s0 =   0                                            ! Initial Saturation
       muo = 4.e-3                                    ! oil viscosity in pascal second
       muw = 1.e-3                                   ! water  ……..
       Kref = 5.e-13                                  ! Sand absolute permeability    m^2
       K=Kref
       M = S^2/muw + (1-S)^2/muo        ! Total relative permeability
       rhow = 1.e3                                    ! Water density   Kg/m^3
       rhoo = .8e3                                     ! Oil density
       g = 9.8                                            ! Gravitational acceleration m/s^2
       gradz = vector(0,1)
 
       Mbar = rhow* S^2/muw + rhoo*(1-S)^2/muo
       f = S^2/muw/M
       krw = S^2/muw
       V = -K*(M*grad(p) + Mbar*g*gradz)
       VW = - K*krw*(grad(p) + rhow*g*gradz)
        Pin = 1.5e6-rhow*g*z               ! hydrostatic pressure along vertical sides of rectangle
base                                                           
        Pout = Pin/2                              ! extraction well pressure              
       kmeter = 100                              ! Dome diameter = length of rectangle base
       hkmeter = kmeter/2
       w20 = .2*hkmeter                      !width of rectangle base
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       frac = hkmeter/8               ! distance of well center along axis x=hkmeter from dome
crown
       tfrac = 2*frac
       hcz = _                                      ! Radius of extraction well                    
       h1 = hkmeter-frac
       phi = .33                                     !porosity                   
      mag = -1/sqrt(dx(p)^2+dz(p)^2)
      npx = dx(p)*mag
      npy = dz(p)*mag
      eps = 2.e-7
      area = 1
      truearea = integral(area)
      sint = integral(s)/truearea
      x1 = -6      y1 = 4     x2 = -3      y2 = -5
      
INITIAL VALUES
       s = s0
       p = p0

 EQUATIONS
        phi*dt(s) + div(VW) - eps*div(grad(s)) = 0                   ! Saturation PDE
        div(V) = 0                                                                       ! Pressure PDE
       
 BOUNDARIES
        REGION 1   
             { Describe the outline boundary of half circle atop a rectangle base.  Assign
boundary
                conditions as you move along}
        area = 1
        start(0,0)    natural(p)=0  natural(s)=0   line to (kmeter,0)
        value(p) = Pin     value(s) =1    line to (kmeter,w20)
        natural(p)=0   natural(s)=0
        arc(center=hkmeter,w20)  angle=180
        value(p) = Pin   value(s)=1      finish    
 
         REGION 2     K=Kref/10
             { Describe baffle-like regions.  No BCs assignment is required}

         start (10+x1,y1+5)  
            line to (20+x1,y1+5) to (20+x1,y1+10) to (30+x1,y1+10)
                 to (30+x1,y1+16) to (40+x1,y1+16)
                 to (40+x1,y1+18) to (50+x1,y1+18)
                 to (50+x1,y1+12) to (60+x1,y1+12)
                 to (60+x1,y1+22) to (50+x1,y1+22)
                 to (50+x1,y1+28) to (43+x1,y1+28)
                 to (43+x1,y1+25) to (25+x1,y1+25)
                 to (25+x1,y1+18) to (18+x1,y1+18)
                 to (18+x1,y1+12) to (10+x1,y1+12)
               finish

     start (53+x2,y2+35)    
            line to (75+x2,y2+35) to (75+x2,y2+30) to (80+x2,y2+30)
                 to (80+x2,y2+28) to (83+x2,y2+28)
                 to (83+x2,y2+32) to (86+x2,y2+32)
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                 to (90+x2,y2+32) to (90+x2,y2+25)
                 to (91+x2,y2+25) to (96+x2,y2+25)
                 to (96+x2,y2+35) to (84+x2,y2+35)
                 to (84+x2,y2+40) to (53+x2,y2+40)
             finish     

     EXCLUDE 3   area = 0
          { Exclude the well interior region.   Assign pressure BCs }               
        start (hkmeter-hcz,hkmeter+w20-frac)   value(p)=Pout
        natural(s) = normal(VW)
        arc(center=hkmeter,hkmeter+w20-frac)  angle=360  finish

  TIME   0 to 86400*2000  by 10         ! Time interval specification

 MONITORS                       ! Displaying results}
        for cycle=10
        contour(s)
       contour(s) zoom(hkmeter-frac,hkmeter-tfrac+w20,  tfrac,tfrac  )
       contour(p)
       vector(npx,npy)
 PLOTS                            ! Storing results for later display
    for   t = 0   by 86400*20    to 86400*2000
       contour(s)
       contour(s) zoom( hkmeter-frac,hkmeter-tfrac+w20,  tfrac,tfrac  )
       contour(p)
       vector(npx,npy)     grid(x,z)

 HISTORIES        ! Display and store production history array
         history(sint)  at    (0,0)  print (500)
        
 END

TITLE      'Dome UnderSampled Data (75 datum points) Full F-I  (Figure
22 of text)

SELECT
      errlim = 4.e-4               ! Maximum error bound
      upwind = off                 ! Turn off FlexPDE internal UPWINDING
scheme
      firstparts                      ! Turn on integration by parts of
first order derivative term
      nrupdate = 12              ! Allow for not more than 12 Newton-
Raphson Updates
      gridlimit = 12               ! Upper bound on the number of
regridding
      stages = 3                   ! Stage downwardly on the diffusion
coefficient 'eps' in the
                                          ! K equation.

COORDINATES
     cartesian('x','z')          ! Use (x,z) coordinate system in lieu
of the default (x,y)

VARIABLES
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             P, U, V, K              ! Main system variables: Pressure,
Filtered x-gradient,
                                          ! Filtered y-gradient, and
Permeability, respectively.
DEFINITIONS

     p0 = table('dmhi1p.p01')
       {Read pressure data that was determined previously from a highly
accurate
        forward simulation at zero water saturation and for a given
permeability distribution.
        The task here is to investigate if one can recover, in some
loose sense, this
        K-distribution  when only a subset of p0 is provided. }

      px =   dx(p)
      pz =   dz(p)
      gradp = vector(px,pz)
      Vee = -K*gradp
      Vees = -K*vector(U,V)

           ! Any known boundary pressure data are employed in the F-I
scheme
      Pin = 1.5e6          ! Inlet Pressure BC along vertical sides of
dome rectangular base
      Pout = Pin/2         ! Extraction well pressure

      Kref = 1.0             !Cauchy data assigned at wellbore

                     {        RESERVOIR GEOMETRY       }
      kmeter = 100               ! Dome diameter = length of rectangular
base
      hkmeter = kmeter/2
      w20 = .2*hkmeter        ! Width of rectangular base
      frac = hkmeter/8          ! Distance of well center along axis
x=hkmeter from dome crown.
      tfrac = 2*frac
      hcz = 1/2                     ! Radius of extraction well.
      h1 = hkmeter-frac

      eps = staged (1.e5,  1.e4, 5.e3)
                                ! Staging on the diffusion coefficient
in the K equation
      alpha = .1          ! Smoothing parameter used  to mollify both of
U and V.

    { The next four parameters are used in creating a uniform 9 by 9
lattice at
       which pressure values are assumed known. More recent versions of
FlexPDE
       are capable of generating these types of lattices along with the
assignment of
       arbitrary nodal pressure  conditions. }
      x0 = 0
      z0 = 0
      delx = .1*kmeter
      delz = .1*(w20+hkmeter)
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 INITIAL VALUES

       P = p0     U=1    V=1      K = Kref       { Starting values of P-
K variables. While in linear
                                        problems these starting values
are fairly arbitrary, a judicious
                                        choice is usually required in
non linear problems, as is the case
                                        here.}
 EQUATIONS
                      div(Vee)  = 0                                    !
Pressure PDE
                      div(grad(U)) + alpha*(px-U) = 0       ! U PDE
                      div(grad(V))  + alpha*(pz-V) = 0       ! V PDE
                      div(Vees) + eps*div(grad(K)) = 0     ! K PDE

 BOUNDARIES
    REGION 1
     { Describe the outline  boundary of half circle atop a rectangular
base.
       Assign  BC's as you move along}

       start(0,0)   natural(p)=0 value(U)=px value(V)=pz  natural(K)=0
line to (kmeter,0)
         value(p)=Pin        line to (kmeter,w20)
         natural(p) = 0    natural(K) = 0
         arc(center=hkmeter,w20)   to (0,w20)
         value(p)=Pin     natural(K)=normal(Vees)     line to   finish

  EXCLUDE 2
     ! Exclude the well internal region from domain and assign BC's

    start (hkmeter-4*hcz,hkmeter-frac+w20)    value(p)=p0 value(U)=px
value(V)=pz
          value(K) = Kref
         arc(center=hkmeter,hkmeter-frac+w20)  angle=360  finish

 !        DEFINE ALL POINTS INSIDE DOMAIN AT WHICH PRESSURE IS KNOWN
APRIORI

! First Row fixed point for  pinning of  P
   Fixed Point  (x0+delx, z0+delz)   point value(P)=p0
   Fixed Point(x0+2*delx,z0+delz)   point value(P)=p0
   Fixed Point(x0+3*delx, z0+delz)  point value(P)=p0
   Fixed Point(x0+4*delx, z0+delz)  point value(P)=p0
   Fixed Point(x0+5*delx, z0+delz)  point value(P)=p0
   Fixed Point(x0+6*delx, z0+delz)  point value(P)=p0
   Fixed Point(x0+7*delx, z0+delz)  point value(P)=p0
   Fixed Point(x0+8*delx, z0+delz)  point value(P)=p0
   Fixed Point(x0+9*delx, z0+delz)  point value(P)=p0

! Second Row fixed point for  pinning of  P
   Fixed Point(x0+delx, z0+2*delz)  point value(P)=p0
   Fixed Point(x0+2*delx, z0+2*delz)  point value(P)=p0
   Fixed Point(x0+3*delx, z0+2*delz)  point value(P)=p0
   Fixed Point(x0+4*delx, z0+2*delz)  point value(P)=p0
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   Fixed Point(x0+5*delx, z0+2*delz)  point value(P)=p0
   Fixed Point(x0+6*delx, z0+2*delz)  point value(P)=p0
   Fixed Point(x0+7*delx, z0+2*delz)  point value(P)=p0
   Fixed Point(x0+8*delx, z0+2*delz)  point value(P)=p0
   Fixed Point(x0+9*delx, z0+2*delz)  point value(P)=p0

! Third Row fixed point for  pinning of  P
   Fixed Point(x0+delx, z0+3*delz)  point value(P)=p0
   Fixed Point(x0+2*delx, z0+3*delz)  point value(P)=p0
   Fixed Point(x0+3*delx, z0+3*delz)  point value(P)=p0
   Fixed Point(x0+4*delx, z0+3*delz)  point value(P)=p0
   Fixed Point(x0+5*delx, z0+3*delz)  point value(P)=p0
   Fixed Point(x0+6*delx, z0+3*delz)  point value(P)=p0
   Fixed Point(x0+7*delx, z0+3*delz)  point value(P)=p0
   Fixed Point(x0+8*delx, z0+3*delz)  point value(P)=p0
   Fixed Point(x0+9*delx, z0+3*delz)  point value(P)=p0

! Fourth Row fixed point for  pinning of  P
   Fixed Point(x0+delx, z0+4*delz)  point value(P)=p0
   Fixed Point(x0+2*delx, z0+4*delz)  point value(P)=p0
   Fixed Point(x0+3*delx, z0+4*delz)  point value(P)=p0
   Fixed Point(x0+4*delx, z0+4*delz)  point value(P)=p0
   Fixed Point(x0+5*delx, z0+4*delz)  point value(P)=p0
   Fixed Point(x0+6*delx, z0+4*delz)  point value(P)=p0
   Fixed Point(x0+7*delx, z0+4*delz)  point value(P)=p0
   Fixed Point(x0+8*delx, z0+4*delz)  point value(P)=p0
   Fixed Point(x0+9*delx, z0+4*delz)  point value(P)=p0

! Fifth Row fixed point for  pinning of  P
   Fixed Point(x0+delx, z0+5*delz)  point value(P)=p0
   Fixed Point(x0+2*delx, z0+5*delz)  point value(P)=p0
   Fixed Point(x0+3*delx, z0+5*delz)  point value(P)=p0
   Fixed Point(x0+4*delx, z0+5*delz)  point value(P)=p0
   Fixed Point(x0+5*delx, z0+5*delz)  point value(P)=p0
   Fixed Point(x0+6*delx, z0+5*delz)  point value(P)=p0
   Fixed Point(x0+7*delx, z0+5*delz)  point value(P)=p0
   Fixed Point(x0+8*delx, z0+5*delz)  point value(P)=p0
   Fixed Point(x0+9*delx, z0+5*delz)  point value(P)=p0

! Sixth Row fixed point for  pinning of  P
   Fixed Point(x0+delx, z0+6*delz)  point value(P)=p0
   Fixed Point(x0+2*delx, z0+6*delz)  point value(P)=p0
   Fixed Point(x0+3*delx, z0+6*delz)  point value(P)=p0
   Fixed Point(x0+4*delx, z0+6*delz)  point value(P)=p0
   Fixed Point(x0+5*delx, z0+6*delz)  point value(P)=p0
   Fixed Point(x0+6*delx, z0+6*delz)  point value(P)=p0
   Fixed Point(x0+7*delx, z0+6*delz)  point value(P)=p0
   Fixed Point(x0+8*delx, z0+6*delz)  point value(P)=p0
   Fixed Point(x0+9*delx, z0+6*delz)  point value(P)=p0

! Seventh Row fixed point for  pinning of  P  ( 2 points fall outside
dome )
           ! Fixed Point(x0+delx, z0+7*delz)  point value(P)=p0
   Fixed Point(x0+2*delx, z0+7*delz)  point value(P)=p0
   Fixed Point(x0+3*delx, z0+7*delz)  point value(P)=p0
   Fixed Point(x0+4*delx, z0+7*delz)  point value(P)=p0
   Fixed Point(x0+5*delx, z0+7*delz)  point value(P)=p0
   Fixed Point(x0+6*delx, z0+7*delz)  point value(P)=p0
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   Fixed Point(x0+7*delx, z0+7*delz)  point value(P)=p0
   Fixed Point(x0+8*delx, z0+7*delz)  point value(P)=p0
          ! Fixed Point(x0+9*delx, z0+7*delz)  point value(P)=p0

! Eighth Row fixed point for  pinning of  P   ( 4 points fall outside
dome )
            !Fixed Point(x0+delx, z0+8*delz)  point value(P)=p0
            ! Fixed Point(x0+2*delx, z0+8*delz)  point value(P)=p0
   Fixed Point(x0+3*delx, z0+8*delz)  point value(P)=p0
   Fixed Point(x0+4*delx, z0+8*delz)  point value(P)=p0
   Fixed Point(x0+5*delx, z0+8*delz)  point value(P)=p0
   Fixed Point(x0+6*delx, z0+8*delz)  point value(P)=p0
   Fixed Point(x0+7*delx, z0+8*delz)  point value(P)=p0
           ! Fixed Point(x0+8*delx, z0+8*delz)  point value(P)=p0
           ! Fixed Point(x0+9*delx, z0+8*delz)  point value(P)=p0

! Ninth Row fixed point for  pinning of  P   ( 7 points fall outside
dome )
           ! Fixed Point(x0+delx, z0+9*delz)  point value(P)=p0
           ! Fixed Point(x0+2*delx, z0+9*delz)  point value(P)=p0
           ! Fixed Point(x0+3*delx, z0+9*delz)  point value(P)=p0
   Fixed Point(x0+4*delx, z0+9*delz)  point value(P)=p0
           ! Fixed Point(x0+5*delx, z0+9*delz)  point value(P)=p0
   Fixed Point(x0+6*delx, z0+9*delz)  point value(P)=p0
          ! Fixed Point(x0+7*delx, z0+9*delz)  point value(P)=p0
          ! Fixed Point(x0+8*delx, z0+9*delz)  point value(P)=p0
          ! Fixed Point(x0+9*delx, z0+9*delz)  point value(P)=p0

                           !       DISPLAYING RESULTS        !

  MONITORS

        grid(x,z)
        contour(p)      contour(p0)
        contour(K)      contour(K) painted
        contour(U)      contour(px)     contour(U-px)
        contour(V)      contour(pz)      contour(V-pz)

 PLOTS
        grid(x,z)
        contour(p)     contour(p0)
        contour(K)     contour(K) painted
        contour(U)     contour(px)     contour(U-px)
        contour(V)      contour(pz)    contour(V-pz)
 END

TITLE      'Dome UnderSampled 9 By 9 Full F-I  Nov 10 98'

SELECT
      errlim = 4.e-4               ! Maximum error bound
      upwind = off                 ! Turn off FlexPDE internal UPWINDING
scheme
      firstparts                      ! Turn on integration by parts of
first order derivative term
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      nrupdate = 12              ! Allow for not more than 12 Newton-
Raphson Updates
      gridlimit = 12               ! Upper bound on the number of
regridding
      stages = 3                   ! Stage downwardly on the diffusion
coefficient 'eps' in the
                                          ! K equation.

COORDINATES
     cartesian('x','z')          ! Use (x,z) coordinate system in lieu
of the default (x,y)

VARIABLES
             P, U, V, K              ! Main system variables: Pressure,
Filtered x-gradient,
                                          ! Filtered y-gradient, and
Permeability, respectively.
DEFINITIONS

     p0 = table('dmhi1p.p01')
       {Read pressure data that was determined previously from a highly
accurate
        forward simulation at zero water saturation and for a given
permeability distribution.
        The task here is to investigate if one can recover, in some
loose sense, this
        K-distribution  when only a subset of p0 is provided. }

      px =   dx(p)
      pz =   dz(p)
      gradp = vector(px,pz)
      Vee = -K*gradp
      Vees = -K*vector(U,V)

           ! Any known boundary pressure data are employed in the F-I
scheme
      Pin = 1.5e6          ! Inlet Pressure BC along vertical sides of
dome rectangular base
      Pout = Pin/2         ! Extraction well pressure

      Kref = 1.0             !Cauchy data assigned at wellbore

                     {        RESERVOIR GEOMETRY       }
      kmeter = 100               ! Dome diameter = length of rectangular
base
      hkmeter = kmeter/2
      w20 = .2*hkmeter        ! Width of rectangular base
      frac = hkmeter/8          ! Distance of well center along axis
x=hkmeter from dome crown.
      tfrac = 2*frac
      hcz = 1/2                     ! Radius of extraction well.
      h1 = hkmeter-frac

      eps = staged (1.e5,  1.e4, 5.e3)
                                ! Staging on the diffusion coefficient
in the K equation
      alpha = .1          ! Smoothing parameter used  to mollify both of
U and V.
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    { The next four parameters are used in creating a uniform 9 by 9
lattice at
       which pressure values are assumed known. More recent versions of
FlexPDE
       are capable of generating these types of lattices along with the
assignment of
       arbitrary nodal pressure  conditions. }
      x0 = 0
      z0 = 0
      delx = .1*kmeter
      delz = .1*(w20+hkmeter)

 INITIAL VALUES

       P = p0     U=1    V=1      K = Kref       { Starting values of P-
K variables. While in linear
                                        problems these starting values
are fairly arbitrary, a judicious
                                        choice is usually required in
non linear problems, as is the case
                                        here.}
 EQUATIONS
                      div(Vee)  = 0                                    !
Pressure PDE
                      div(grad(U)) + alpha*(px-U) = 0       ! U PDE
                      div(grad(V))  + alpha*(pz-V) = 0       ! V PDE
                      div(Vees) + eps*div(grad(K)) = 0     ! K PDE

 BOUNDARIES
    REGION 1
     { Describe the outline  boundary of half circle atop a rectangular
base.
       Assign  BC's as you move along}

       start(0,0)   natural(p)=0 value(U)=px value(V)=pz  natural(K)=0
line to (kmeter,0)
         value(p)=Pin        line to (kmeter,w20)
         natural(p) = 0    natural(K) = 0
         arc(center=hkmeter,w20)   to (0,w20)
         value(p)=Pin     natural(K)=normal(Vees)     line to   finish

  EXCLUDE 2
     ! Exclude the well internal region from domain and assign BC's

    start (hkmeter-4*hcz,hkmeter-frac+w20)    value(p)=p0 value(U)=px
value(V)=pz
          value(K) = Kref
         arc(center=hkmeter,hkmeter-frac+w20)  angle=360  finish

 !        DEFINE ALL POINTS INSIDE DOMAIN AT WHICH PRESSURE IS KNOWN
APRIORI

! First Row fixed point for  pinning of  P
   Fixed Point  (x0+delx, z0+delz)   point value(P)=p0
   Fixed Point(x0+2*delx,z0+delz)   point value(P)=p0
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   Fixed Point(x0+3*delx, z0+delz)  point value(P)=p0
   Fixed Point(x0+4*delx, z0+delz)  point value(P)=p0
   Fixed Point(x0+5*delx, z0+delz)  point value(P)=p0
   Fixed Point(x0+6*delx, z0+delz)  point value(P)=p0
   Fixed Point(x0+7*delx, z0+delz)  point value(P)=p0
   Fixed Point(x0+8*delx, z0+delz)  point value(P)=p0
   Fixed Point(x0+9*delx, z0+delz)  point value(P)=p0

! Second Row fixed point for  pinning of  P
   Fixed Point(x0+delx, z0+2*delz)  point value(P)=p0
   Fixed Point(x0+2*delx, z0+2*delz)  point value(P)=p0
   Fixed Point(x0+3*delx, z0+2*delz)  point value(P)=p0
   Fixed Point(x0+4*delx, z0+2*delz)  point value(P)=p0
   Fixed Point(x0+5*delx, z0+2*delz)  point value(P)=p0
   Fixed Point(x0+6*delx, z0+2*delz)  point value(P)=p0
   Fixed Point(x0+7*delx, z0+2*delz)  point value(P)=p0
   Fixed Point(x0+8*delx, z0+2*delz)  point value(P)=p0
   Fixed Point(x0+9*delx, z0+2*delz)  point value(P)=p0

! Third Row fixed point for  pinning of  P
   Fixed Point(x0+delx, z0+3*delz)  point value(P)=p0
   Fixed Point(x0+2*delx, z0+3*delz)  point value(P)=p0
   Fixed Point(x0+3*delx, z0+3*delz)  point value(P)=p0
   Fixed Point(x0+4*delx, z0+3*delz)  point value(P)=p0
   Fixed Point(x0+5*delx, z0+3*delz)  point value(P)=p0
   Fixed Point(x0+6*delx, z0+3*delz)  point value(P)=p0
   Fixed Point(x0+7*delx, z0+3*delz)  point value(P)=p0
   Fixed Point(x0+8*delx, z0+3*delz)  point value(P)=p0
   Fixed Point(x0+9*delx, z0+3*delz)  point value(P)=p0

! Fourth Row fixed point for  pinning of  P
   Fixed Point(x0+delx, z0+4*delz)  point value(P)=p0
   Fixed Point(x0+2*delx, z0+4*delz)  point value(P)=p0
   Fixed Point(x0+3*delx, z0+4*delz)  point value(P)=p0
   Fixed Point(x0+4*delx, z0+4*delz)  point value(P)=p0
   Fixed Point(x0+5*delx, z0+4*delz)  point value(P)=p0
   Fixed Point(x0+6*delx, z0+4*delz)  point value(P)=p0
   Fixed Point(x0+7*delx, z0+4*delz)  point value(P)=p0
   Fixed Point(x0+8*delx, z0+4*delz)  point value(P)=p0
   Fixed Point(x0+9*delx, z0+4*delz)  point value(P)=p0

! Fifth Row fixed point for  pinning of  P
   Fixed Point(x0+delx, z0+5*delz)  point value(P)=p0
   Fixed Point(x0+2*delx, z0+5*delz)  point value(P)=p0
   Fixed Point(x0+3*delx, z0+5*delz)  point value(P)=p0
   Fixed Point(x0+4*delx, z0+5*delz)  point value(P)=p0
   Fixed Point(x0+5*delx, z0+5*delz)  point value(P)=p0
   Fixed Point(x0+6*delx, z0+5*delz)  point value(P)=p0
   Fixed Point(x0+7*delx, z0+5*delz)  point value(P)=p0
   Fixed Point(x0+8*delx, z0+5*delz)  point value(P)=p0
   Fixed Point(x0+9*delx, z0+5*delz)  point value(P)=p0

! Sixth Row fixed point for  pinning of  P
   Fixed Point(x0+delx, z0+6*delz)  point value(P)=p0
   Fixed Point(x0+2*delx, z0+6*delz)  point value(P)=p0
   Fixed Point(x0+3*delx, z0+6*delz)  point value(P)=p0
   Fixed Point(x0+4*delx, z0+6*delz)  point value(P)=p0
   Fixed Point(x0+5*delx, z0+6*delz)  point value(P)=p0
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   Fixed Point(x0+6*delx, z0+6*delz)  point value(P)=p0
   Fixed Point(x0+7*delx, z0+6*delz)  point value(P)=p0
   Fixed Point(x0+8*delx, z0+6*delz)  point value(P)=p0
   Fixed Point(x0+9*delx, z0+6*delz)  point value(P)=p0

! Seventh Row fixed point for  pinning of  P  ( 2 points fall outside
dome )
           ! Fixed Point(x0+delx, z0+7*delz)  point value(P)=p0
   Fixed Point(x0+2*delx, z0+7*delz)  point value(P)=p0
   Fixed Point(x0+3*delx, z0+7*delz)  point value(P)=p0
   Fixed Point(x0+4*delx, z0+7*delz)  point value(P)=p0
   Fixed Point(x0+5*delx, z0+7*delz)  point value(P)=p0
   Fixed Point(x0+6*delx, z0+7*delz)  point value(P)=p0
   Fixed Point(x0+7*delx, z0+7*delz)  point value(P)=p0
   Fixed Point(x0+8*delx, z0+7*delz)  point value(P)=p0
          ! Fixed Point(x0+9*delx, z0+7*delz)  point value(P)=p0

! Eighth Row fixed point for  pinning of  P   ( 4 points fall outside
dome )
            !Fixed Point(x0+delx, z0+8*delz)  point value(P)=p0
            ! Fixed Point(x0+2*delx, z0+8*delz)  point value(P)=p0
   Fixed Point(x0+3*delx, z0+8*delz)  point value(P)=p0
   Fixed Point(x0+4*delx, z0+8*delz)  point value(P)=p0
   Fixed Point(x0+5*delx, z0+8*delz)  point value(P)=p0
   Fixed Point(x0+6*delx, z0+8*delz)  point value(P)=p0
   Fixed Point(x0+7*delx, z0+8*delz)  point value(P)=p0
           ! Fixed Point(x0+8*delx, z0+8*delz)  point value(P)=p0
           ! Fixed Point(x0+9*delx, z0+8*delz)  point value(P)=p0

! Ninth Row fixed point for  pinning of  P   ( 7 points fall outside
dome )
           ! Fixed Point(x0+delx, z0+9*delz)  point value(P)=p0
           ! Fixed Point(x0+2*delx, z0+9*delz)  point value(P)=p0
           ! Fixed Point(x0+3*delx, z0+9*delz)  point value(P)=p0
   Fixed Point(x0+4*delx, z0+9*delz)  point value(P)=p0
           ! Fixed Point(x0+5*delx, z0+9*delz)  point value(P)=p0
   Fixed Point(x0+6*delx, z0+9*delz)  point value(P)=p0
          ! Fixed Point(x0+7*delx, z0+9*delz)  point value(P)=p0
          ! Fixed Point(x0+8*delx, z0+9*delz)  point value(P)=p0
          ! Fixed Point(x0+9*delx, z0+9*delz)  point value(P)=p0

                           !       DISPLAYING RESULTS        !

  MONITORS

        grid(x,z)
        contour(p)      contour(p0)
        contour(K)      contour(K) painted
        contour(U)      contour(px)     contour(U-px)
        contour(V)      contour(pz)      contour(V-pz)

 PLOTS
        grid(x,z)
        contour(p)     contour(p0)
        contour(K)     contour(K) painted
        contour(U)     contour(px)     contour(U-px)
        contour(V)      contour(pz)    contour(V-pz)
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 END
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Appendix E:  Black Oil  Model for  Example  Problems

A black-oil model (BOM) for oil-water systems is formulated here.  It is the basis for
the two example problems that are considered in the text.  One problem is an idealized
water-drive scenario on a 2-D horizontal rectangular domain (Ω) with zero gravitational
forces;  and the other is a 2-D vertical oil-dome model with gravitational forces.  The flow
systems are described by the mean flow equation in all cases, and stochastic residual flux
terms are taken to be negligible.  Residual fluxes are averaged second-order statistical
fluctuation terms that contribute to the rate of change of the mean flow equation. They act
like other source terms that may generally appear in the flow equation.  Their neglect is not
a serious limitation in proofs-of-concept at this stage of development.  Additional
implications pertaining to this assumption were discussed in Appendix A.

The saturation of phase l  is denoted by Sl,  0 ≤ Sl ≤1, with
So + Sw = 1. (E-1)

The usual convention for the indices, o for oil and w for water, is adopted here. Often,
the water saturation is abbreviated as S and is referred to simply as ‘saturation‘ without any
other qualifications. As in the article by Saad and Zhang [1998], simple parabolic relative
permeabilities, Krw and Kro , are assumed and expressed as

Krw = Sw
2, (E-2a)

Kro = So
2. (E-2b)

The mobility, λl , of phase l is defined by,

λl = Ksat • Krl/µl, (E-3)

where Ksat is the absolute rock permeability, and µl is the viscosity of phase l.  For ease of
writing, the subscript in Ksat will henceforth be dropped. Thus, in the remaining discussion,
K will denote the saturation-independent permeability coefficient.  Because capillary
pressure is assumed to be zero, the oil and water pressures are equal and will henceforth be
denoted by P.  The total mobility, M, is defined as the sum of all mobilities divided by K.  It
follows from equations (E-1) — (E-3) that M is given by,

M = S2/µw + (1 - S)2/µo .  (E-4)

The total velocity V and the fractional flux f are defined as,

V = - K •  M grad(P), (E-5)
f = [S2/µw]/M. (E-6)

If the porosity ϕ is taken to be constant and gravity effects are negligible everywhere in
Ω, it can be shown that the two PDEs governing a general two-phase flow reduce to,

ϕ∂tS + div(V • f) = 0, (E-7)
div(V)  = 0. (E-8)
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Throughout this discussion, equations (E-7) and (E-8) are referred to as the saturation
and pressure equations, respectively.  This makes sense, since the former describes the
saturation evolution for a known pressure distribution and a given initial saturation.  And
vise versa, the latter determines the pressure P everywhere for a known saturation
distribution and given pressure boundary conditions (BCs).  In fact, if the flow is assumed
to be one-dimensional, say along the x-axis, then from equation (E-8), V must be a constant;
and equation (E-7) yields the well-known Buckley-Leverett equation in the water saturation,
namely,

ϕ∂tS + V∂xf = 0. (E-9)

It is important to note here the vast distinction in the types of the two PDE’s, (E-7) and
(E-8).  On the one hand, the pressure equation (E-8) is a well-behaved elliptic equation.  It
is, in fact, ‘strongly elliptic’, since the coefficient M(S) is bounded from below by the
positive constant 1/(µo+µw ).  It is thus posed as a boundary value problem (BVP).  The
saturation equation (E-7), on the other hand, is of the hyperbolic type and should thus be
treated as a Cauchy-initial-value problem.  That is, the saturation equation is well-posed only
if the initial saturation is given everywhere in Ω along with the saturation history over some
‘admissible curve’, Γ.  The significance of these distinctions will be discussed more
extensively in later technical articles.    
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